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Abstract

This thesis delves into a comprehensive study of Anti-de Sitter (AdS) black holes, fo-

cusing on their properties and calculation of Quasi Normal Frequencies of various black

holes. Beginning with a thorough exploration of black hole physics, including the holo-

graphic principle, large N expansion of gauge theories, and string theory. I reviewed the

QCD connection to string theory and the Physics of D branes. I derive the AdS/CFT

correspondence and examine its implications.

A significant portion of the research is dedicated to investigating the thermal equi-

librium of AdS black holes and perturbations of Schwarzschild AdS black holes in d

dimensions. I analyze scalar, gravitational, and electromagnetic perturbations, computing

their quasinormal frequencies to understand the dynamic behavior of AdS black holes.

Moreover, I delve into the thermodynamic quantities of AdS black holes and extend

my analysis to rotating black holes, employing a novel numerical technique which avoids

traditional root-finding routines for computing quasinormal frequencies. By applying

the continued fraction method proposed by Leaver with my new technique (i.e. using

Padé approximation and modified Lent’s algorithm rather than using the conventional

computation method directly), I achieved excellent accuracy in evaluating the angular

eigenvalues of Teukolsky’s angular equation, enabling the calculation of both slowly and

rapidly damped quasinormal frequencies.

ix



x Abstract

Furthermore, I explored the Kerr-Sen black hole, studying the correspondence between

its shadow radius and quasinormal modes. Through rigorous analysis, I derive expressions

for the real part of quasinormal modes related to the shadow radius, particularly focusing

on the eikonal limit.

By employing advanced mathematical techniques and numerical methods, this research

contributes to a deeper understanding of AdS black holes, their dynamic behavior, and

their QNM properties. These findings enrich my understanding of fundamental principles

in theoretical physics and pave the way for further exploration in this fascinating field

especially in the field of gravitational waves.

Keywords— AdS, Quasi Normal Frequencies, Black Hole.
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1
Introduction

In the realm of theoretical physics, there exist profound and captivating ideas that

transcend the boundaries of our conventional understanding of the universe. These

ideas not only challenge our fundamental notions of space, time, and matter but

also reveal unexpected connections between disparate facets of the physical world.

Among these remarkable concepts are the AdS/CFT correspondence, holographic

duality, and large N symmetries. Each of these notions, in its own right, has

revolutionized our comprehension of the cosmos. Yet, when viewed together, they

present a panoramic view of the universe that defies our intuitions and beckons us

to explore the hidden depths of theoretical physics.

The AdS/CFT correspondence, often referred to as the holographic principle,

3
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stands as a pinnacle of 21st-century theoretical physics. It asserts a remarkable

relationship between two seemingly unrelated theories: Anti-de Sitter space (AdS),

a negatively curved spacetime, and conformal field theory (CFT), a quantum field

theory living on its boundary. In this duality, a gravitational theory in AdS is

equivalent to a quantum field theory on the boundary of that spacetime. This

profound insight, first conjectured by Juan Maldacena in 1997, not only bridges

the chasm between quantum mechanics and gravity but also opens new vistas

for understanding black holes, quantum entanglement, and the very nature of

spacetime itself.

My Thesis embarks on a captivating journey into the interconnected worlds of the

AdS/CFT correspondence, holographic duality, and gauge-gravity correspondence

and a little bit about string theory. We will delve into the historical developments,

mathematical foundations, and multifaceted applications of these ideas, striving to

unravel the mysteries they hold and the profound implications they bear for our

understanding of the cosmos.

1.1 Hints For Holography

"The career of a young theoretical physicist consists of treating the harmonic

oscillator in ever-increasing levels of abstraction." - Sidney Coleman

In this section, we examine the idea of holographic duality. We start by investigat-

ing gravitational systems and deriving the principles of black hole thermodynamics,

which ultimately give rise to the holography principle. Then, we delve into gauge

theory, particularly focusing on the large N (t’Hooft) limit. Finally, we draw
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comparisons between this theory and string theory, offering valuable perspectives

on holographic duality.

Anti-de Sitter space spans across different spatial dimensions, notably serving a

pivotal function in the AdS/CFT correspondence. This correspondence hints at the

potential to depict a fundamental force in quantum mechanics, like electromagnetism

or the strong force, within a defined number of dimensions through string theory.

Here, the strings are situated within an anti-de Sitter space, encompassing an extra

(non-compact) dimension.

1.1.1 Prelude

Theoretical interactions are well-described by the path integral formalism and

Wilsonian Renormalization Group, yet translating calculations into this framework

isn’t always feasible. Gravity, however, presents distinct challenges due to its unique

nature. From the theory of general gravity (GR):

Classical Gravity = Space-time (no concept of spacetime fabric, simply GR)

Understanding quantum gravity poses challenges, requiring a dynamic view

of spacetime. The fundamental nature of spacetime — whether it’s inherent or

emergent, continuous or discrete — poses intriguing questions. The quantum

behavior of black holes and the origins of the universe remain captivating subjects,

with the potential profound importance of gravity’s weakness adding to the mystery.
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Figure 1.1: AdS/CFT duality

1.1.2 Emergence of Gravity

Considering field theory, a common question arises: Can massless spin-2 particles

(gravitons) emerge from a theory that encompasses massless spin-1 particles (such

as photons and gluons) and spin-1/2 particles (such as protons and electrons)?

The emergence of gravitons would suggest gravity’s emergent nature. While

Quantum Chromodynamics (QCD) exhibits massive spin-2 excitations, attempts

to manipulate the theory to produce massless spin-2 particles were hampered by

Weinberg and Witten’s powerful theorem.

Theorem 1.1.1. A theory that permits the establishment of a Lorentz-invariant

conserved 4-vector current Jµ cannot accommodate massless particles with spins

greater than 1/2, provided that the proposed charge
∫
J0d3x possesses a non-zero

value.

Theorem 1.1.2. A theory that permits the existence of a preserved Lorentz-

invariant stress tensor T µν cannot include massless particles with spin > 1.

Proof. Let’s imagine a scenario where we examine a theory allowing Lorentz-

covariant conserved currents and stress tensors, which can incorporate massless
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particles possessing spin-J. In this context, each individual particle state can be

denoted as |k, σ⟩, where kµ = (k0,k), and σ = ±j signifies the particle’s helicity.

We then have:

R̂(θ, k̂) |k, σ⟩ = eiσθ |k, σ⟩ (1.1)

Here, R̂(θ, k̂) denotes the rotation operator by an angle θ around k̂ = k
|k| . The

Lorentz-covariant current, denoted as Jµ, gives rise to a conserved charge repre-

sented as:

Q̂ =

∫
J0d3x (1.2)

Additionally, the Lorentz-covariant stress tensor, indicated by T µν , encompasses

the conserved momentum:

P̂ =

∫
T 0µd3x (1.3)

Consequently, we have:

P̂ µ |k, σ⟩ = kµ |k, σ⟩ (1.4)

When the state |k, σ⟩ is subject to the symmetry generated by Jµ with a charge of

q:

Q̂ |k, σ⟩ = q |k, σ⟩ (1.5)

Our aim is to establish:

1. If q ̸= 0, then j ≤ 1
2

2. For Lorentz covariant conserved T µν , j ≤ 1

To begin, we state that Lorentz invariance implies:
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⟨k, σ| Jµ |k′, σ⟩ k→k′−−−→ qkµ

k0
1

(2π)3
(1.6)

⟨k, σ|T µν |k′, σ⟩ k→k′−−−→ kµkν

k0
1

(2π)3
(1.7)

In the expression ⟨k, σ, |, k′, σ′⟩ = δσσ′δ(3)(k− k′), when examining the 0th compo-

nent of equation (1.6), we find ⟨k, σ |J0| k′, σ⟩ k→k′−−−→ q
(2π)3

.

For massless particles, where k2 = k′2 = 0, it implies kµk′µ < 0, suggesting k+k′

to be timelike. Choosing a frame such that k+ k′ = 0 and kµ = (E, 0, 0, E) and

k′µ = (E, 0, 0,−E), rotation by θ around the z-axis yields the following outcome:

R̂(θ) |k, j⟩ = eijθ |k, j⟩ , R̂(θ) |k′, j⟩ = e−ijθ |k′, j⟩ (1.8)

⟨k′, j
∣∣∣R̂−1(θ)JµR̂(θ)

∣∣∣ k, j⟩ = e2ijθ⟨k′, j |Jµ| k, j⟩ (1.9)

⇒ e2ijθ⟨k′, j |Jµ| k, j⟩ = Λµ
ν (θ)⟨k′, j |Jν | k, j⟩ (1.10)

In equation (1.8), the negative sign arises because k′ possesses the opposite ori-

entation to k, hence the helicity should also change sign. Λµ
ν represents the

transformation induced by a rotation of a 4-vector by an angle θ around the z-axis.

Similarly,

e2ijθ⟨k′, j |T µν | k, j⟩ = Λµ
ρ(θ)Λ

ν
λ(θ)⟨k′, j

∣∣T ρλ
∣∣ k, j⟩ (1.11)

e2ijθ⟨k′, j |T µν | k, j⟩ = Λµ
ρ(θ)Λ

ν
λ(θ)⟨k′, j

∣∣T ρλ
∣∣ k, j⟩ (1.12)

Therefore, ⟨k′, j
∣∣∣R̂−1(θ)JµR̂(θ)

∣∣∣ k, j⟩ can only possess a non-zero value if j ≤ 1/2.

Otherwise, equation (1.6) would be contradicted because Λµ
ν (θ) has eigenvalues

e±iθ, 1. Similarly, ⟨k′, j |T µν | k, j⟩ can only be non-zero if j ≤ 1. Otherwise, equation
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(1.7) would be contradicted. Therefore, both theorems are proven.

The Weinberg-Witten Theorem prohibits massless spin-2 particles, crucial for

gravity, in QFT’s spacetime. However, emergent gravity may arise in different

spacetime realms, as demonstrated in holographic duality.

Remarks:

1. The principles of black hole thermodynamics lead to the holographic principle.

2. Gauge theories with a large N lead to gauge/string duality.

1.2 Black Holes

First, we’ll compare the strength of gravity with that of the electromagnetic (EM)

interaction. In the case of EM, the interaction is described by VEM = e2/r. Here,

we consider the reduced Compton wavelength rc = ℏ
mc

as the minimum separation

between particles, reflecting a fundamental limit on measuring particle positions

due to the principles of quantum mechanics and special relativity. Using the unit

of particle static mass, the EM interaction has the effective strength:

λEM =
VEM(rC)

mc2
=
e2

ℏc
= α =

1

137
(1.13)

Alternatively, we can determine the effective magnitude of gravity:

λG =
VG(rc)

mc2
=
GNm

2

ℏ/mc
1

mc2
=
m2

m2
p

=
l2p
r2c

(1.14)
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In such cases, λG ≪ 1 for m ≪ mp, where mp denotes the Planck mass and lp

represents the Planck length. As an illustration, for an electron with a mass of

5× 10−4 GeV/c2, we find:

λG
λEM

≈ 10−43 (1.15)

In this scenario, the gravitational influence is relatively feeble. However, if the mass

reaches the Planck scale mp, then λG ∼ O(1), indicating that quantum gravity

effects become notable (with the corresponding length scale being lp).

1.2.1 Schwarzschild Radius

To determine at what distance rs from an object of mass m classical gravity becomes

significant, we can examine the influence of a probe mass m′. At the point where

classical gravity becomes strong, means that

GNmm
′/rs

m′c2
∼ 1 ⇒ rs =

GNm

c2
(1.16)

For an object with mass m, we have two significant scales to consider:

1. rc = ℏ
mc

— Known as the Reduced Compton wavelength.

2. rs = 2GNm
c2

— Known as the Schwarzschild radius.

The factor of 2 in rs originates from a General Relativity calculation concerning

a Schwarzschild black hole. From the comparison rs
rc

∼ m2

m2
p
, we can infer:

1. When m ≫ mp, rs ≫ rc: Classical gravity dominates (quantum effects are

negligible).
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2. When m≪ mp, rs ≪ rc: rs is insignificant, and gravity has a weak impact.

3. When m ∼ mp, rs ∼ rc: Quantum gravity effects become significant.

However, the story doesn’t end there. Black holes can showcase quantum gravity

effects on a macroscopic scale, at lengths approximately equal to O(rs).

Remark 1.2.1. lp serves as the fundamental limit of localization strength. In realms

outside of gravity, the probing length scale l ∼ ℏ
p

can theoretically approach

infinitesimal sizes with sufficiently large momentum p. However, in gravitational

contexts, when E ∼ p ≫ mp, rs ∼ GNp
c3

emerges as the dominant scale. Given

rs ∝ p, higher energies yield larger length scales, thus defining lp as the minimal

probable scale. Alternatively, considering the uncertainty principle δp ∼ ℏ
δx

, we

derive δx > GN δp
c3

∼ GNℏ
c3δx

, resulting in δx >
√

ℏGN

c3
= lp.

1.2.2 Classical Black Hole Geometry

The solution to Einstein’s equation with zero cosmological constant yields black

hole geometry, originating from an object of mass M. Assuming the object’s

spherical symmetry, non-rotation, and neutrality, we obtain the Schwarzschild

metric solution:

ds2 = −fdt2 + 1

f
dr2 + r2(dθ2 + sin2θdϕ2), f = 1− 2GNM

r
= 1− rs

r
(1.17)

The event horizon is defined at r = rs = 2GNM , where gtt = 0 and grr = ∞. As r

passes the event horizon, there is a change in sign for f , and the roles of r and t

switch.
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Remark 1.2.2. 1. While it possesses time-reversal symmetry (t → −t), it does

not represent a black hole originating from gravitational collapse, which lacks

such symmetry. Rather, it functions as a mathematical abstraction of such an

occurrence.

2. One can confirm the absence of spacetime singularity at the horizon by

computing curvature invariants (e.g., the Kretschmann scalar I = RαβγδR
αβγδ =

48
G2

NM2

r6
). The apparent singularity is merely a coordinate singularity, where

Schwarzschild time (t) and radial coordinates (r) become singular at the horizon,

rather than representing an inherent singularity.

3. The horizon experiences infinite redshift, observed by an observer Oh near

r = rh ≈ rs and another O∞ at r = ∞. At r = ∞, the spacetime metric yields

ds2 → −dt2+dr2+r2dΩ2, where t denotes proper time forO∞. Conversely, at r = rh,

the metric becomes ds2 = −f(rh)dt2 + ··· = −dτ 2 + ···, with dτh = f 1/2(rh)dt

representing proper time for Oh. Then

dτh
dt

= (1− rs
rh
)
1
2 (1.18)

As rh approaches rs, dτh
dt

tends towards zero, implying that time near r = rh slows

infinitely compared to r = ∞. Consider an event with energy Eh occurring at

r = rh: For observer O∞, this event appears with energy E∞ = Ehf
1
2 (rh). Hence,

for a fixed local energy Eh, E∞ diminishes to zero as rh approaches rs, leading to

what we term as infinite redshift.

4. A free-falling traveler requires a finite proper time to reach the horizon, yet

an infinite Schwarzschild time.
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5. The horizon possesses two intrinsic geometric characteristics:

• Spatial section area: A = 4πr2s = 16πG2
NM

2

• Surface gravity: Characterized as the acceleration experienced by a stationary

observer positioned at the horizon, as measured by an observer situated at

infinity. It is expressed by K = 1
2
f ′(rs) =

1
4GNM

.

1.2.3 Rindler Spacetime and Causal Structure

To understand the spacetime arrangement around a black hole, let’s focus on the

region just outside its horizon. Here, we define the proper distance ρ from the

horizon as follows:

dρ =
dr√
f

r→rs−−−→ dr√
f ′(rs)(r − rs) + · · ·

(1.19)

⇒ ρ =
2√
f ′(rs)

√
r − rs (1.20)

Expressing it as a function of ρ, we have:

f(r) = f ′(rs)(r − rs) + · · · =
(
1

2
f ′(rs)

)2

ρ2 + · · · = K2ρ2 + · · · (1.21)

where K represents the surface gravity. Near the horizon, the metric becomes:

ds2 = −K2ρ2dt2 + dρ2 + r2sdΩ
2
2 = −ρ2dη2 + dρ2 + r2sdΩ

2
2 (1.22)

In this context, we introduce the variable η = Kt = t
2rs

. The initial two components

of the mentioned expression are referred to as the (1+1)-dimensional Minkowski



14 Chapter 1 - Introduction

metric represented in a Rindler format.

Consider M2 (2d Minkowski spacetime):

ds2M2
= −dT 2 + dX2 (1.23)

Let’s consider, X = ρ cosh η, T = ρ sinh η, we have

ds2M2
= −ρ2dη2 + dρ2 (1.24)

As X2 − T 2 = ρ2 ≥ 0, the (ρ, η) coordinates cover only part of M2. The sector

where ρ ≥ 0 corresponds to X ≥ 0 or region I in figure1.2

Figure 1.2: Causal structure of M2 represented in the Rindler form.

Note the following:

1. For X = T (X > 0): As η → ∞, ρ→ 0 with ρeη remaining finite.

2. For X = −T (X > 0): As η → −∞, ρ→ 0 with ρe−η remaining finite.

3. For X = T = 0: ρ = 0 for any finite η.
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Consequently, the black hole’s horizon ρ = 0 corresponds to a light cone where

X = ±T . The geometry near the black hole’s horizon can be conceptualized as

Rindler space multiplied by a 2-sphere, as depicted in Fig. 1.3

Figure 1.3: Black hole geometry near horizon.

Remark 1.2.3. 1. An observer situated at r = const. for (r ≥ rs) is equivalent to

an observer with ρ = const. within a Rindler patch, representing an observer in

Minkowski spacetime tracing a hyperbolic trajectory X2 − T 2 = ρ2 = const. Such

an observer experiences a proper acceleration given by

a =
1

ρ
=
f ′(rs)

2

1√
r − rs

(1.25)

Moreover, the acceleration observed by O∞ is given by a∞ = a(r)f 1/2(r) = K.

2. A free-falling observer in close proximity to a black hole’s horizon is equivalent

to an inertial observer within M2.

3. In Rindler coordinates (ρ, η), there is a singularity at ρ = 0. However, the

use of Minkowski coordinates (X,T ) allows for the extension of region I to cover

the entire Minkowski spacetime. Similarly, transitioning to appropriate coordinates
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(Kruskal coordinates) enables the expansion of Schwarzschild spacetime into four

quadrants (refer to Fig. 1.4).

• It’s evident that neither information nor any observer within Region II can

traverse to Region I, as they are distinguished from a future horizon.

• Regions III and IV are time-reversed counterparts of I and II respectively, but

they are not present in real black holes formed from gravitational collapse.

Observers in region I cannot affect events in region IV, as they are separated

by a past horizon.

• At r = 0, a space-like curvature singularity is present, known as the singularity

of a black hole.

Figure 1.4: The geometry of a Schwarzschild black hole depicted in Kruskal coordinates.

1.2.4 Penrose Diagram

In this section, we explore Penrose diagrams, employed for depicting the overall

causal arrangement of a spacetime. Our examination begins with the metric

formulation: ds2 = gab(x)dx
adxb.
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1. Discover a coordinate transformation xa = xa(yα) such that yα possesses a

finite range, effectively mapping the entire spacetime onto a finite region.

2. Create an alternate metric that is conformally linked to the initial metric:

ds̃2 = Ω2(y)ds2 = g̃αβ(y)dy
αdyβ (1.26)

ensuring that g̃αβ is straightforward. This transformation preserves the causal

structure as null rays remain unaffected by conformal rescalings.

Example : (1+1)d Minkowski space

ds2 = −dT 2 + dX2 = −dUdV ; U = T −X, V = T +X

Let U = tanu and V = tan v, where u and v are within the interval [−π
2
, π
2
]. We

define the following in the context of Example : (1+1)d Minkowski space:

• i0: Spatial infinity (infinite X, finite T )

• i+: Timelike future infinity (T → ∞, finite X)

• i−: Timelike past infinity (T → −∞, finite X)

• I+: Null future infinity (termination point for all null rays)

• I−: Null past infinity (origin point for all null rays)

These points (lines) are to be indicated accordingly on the Penrose diagram for

M2, as depicted in Fig. 1.5.
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Figure 1.5: M2 Penrose diagram.

Another intriguing instance involves the Schwarzschild black hole:

• Initially, we examine the (r, t) plane.

• Subsequently, we transition to a coordinate system (Kruskal) encompassing

all 4 regions (similar to U, V in Minkowski spacetime).

• Finally, we perform a coordinate transformation to render the new coordinates

finite in range, converting (U, V ) to (u, v).

Figure 1.6: Penrose diagram depicting the Schwarzschild black hole in M2.

1.2.5 Temperature of a black hole

In QFT, when considering a finite temperature (T ), we transition to Euclidean

signature by substituting t with −τ , where τ is periodic: τ ∼ τ + ℏβ, with β = 1
T
.
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When the Schwarzschild metric is analytically continued to Euclidean signature

with t→ −iτ , it yields the following expression near the horizon:

dS2
E = ρ2K2dτ 2 + dρ2 + r2dΩ2

2 = dρ2 + r2sdΩ
2
2; θ = Kτ =

τ

2rs
(1.27)

Take into account that the first two terms represent polar coordinates in Euclidean

R2. This metric displays a conical singularity unless θ has periodicity over 2π,

meaning θ ∼ θ+2π. Since the horizon remains nonsingular in Lorentzian signature,

it should also lack singularity in Euclidean form. Hence, τ must be periodic.

τ ∼ τ +
2π

K
(1.28)

Note that t represents the proper time for an observer situated at r = ∞, implying

that this observer would perceive a temperature:

T =
1

β
=

ℏK
2π

=
ℏ

8πGNm
(1.29)

Figure 1.7: Schwarzschild black hole near horizon geometry in Minkowski (left) and
Euclidean (right) signature.

For an observer at a certain radial distance r, as dtloc = f
1
2 (r)dt, the local

temperature becomes infinite near the horizon, indicating that the black hole

horizon appears extremely hot for a stationary observer !!!!
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Similarly for Rindler spacetime

ds2 = −ρ2dη2 + dρ2 → η = −iθds2E = ρ2dθ2 + dρ2 (1.30)

Given the periodicity of θ over 2π, we establish the local proper time as dτ 2loc = ρ2dθ2,

thus necessitating periodicity for τloc.

TRindler
loc (ρ) =

ℏ
2πρ

=
ℏa
2π

(1.31)

In Minkowski spacetime, considering a = 1
ρ
, an accelerating observer will sense a

temperature that is proportional to its acceleration.

Figure 1.8: Rindler spacetime in Minkowski (left) and Euclidean (right) signature.

Physical interpretation of the temperature

In a black hole spacetime, a QFT’s “vacuum” state, derived through analytic

continuation from the Euclidean signature, represents a thermal equilibrium state

with the associated temperature.

Remark 1.2.4. 1. In a curved spacetime, there isn’t a single vacuum choice for a

QFT. For a Schwarzschild black hole, it’s a “Hartle-Hawking vacuum” whereas,

in a Rindler scenario, it’s the Minkowski vacuum confined to the Rindler patch

(reduced density matrix of the Minkowski vacuum).
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2. When considering a black hole, if τ is chosen to be noncompact in Euclidean

signature, we arrive at the Schwarzschild vacuum (Boulware vacuum), obtained

through canonical quantization in terms of Schwarzschild time t. In the Rindler

scenario, if θ is noncompact, we obtain the Rindler vacuum, achieved through

canonical quantization in the Rindler patch using η.

3. In the Schwarzschild vacuum, physical observables often become singular at

the horizon due to the singularity in the corresponding Euclidean manifold, such

as the stress tensor blowing up, unlike in Lorentzian signature.

1.2.6 Black Hole Thermodynamics

As discussed earlier, it’s established that a black hole possesses a temperature:

TBH =
ℏ

8πGNm

Therefore, a black hole operates as a thermodynamic entity, adhering to the

principles of thermodynamics. Now, consider the thermodynamic relationships:

dS

dE
=

1

T (E)
=

8πGNm

ℏ
(1.32)

Since for a black hole E = m, Entropy

S(E) =

∫
dE

T (E)
=

4πGNE
2

ℏ
+ const =

4πr2s
4ℏGN

=
ABH

eℏGN

(1.33)

The integral constant can be established as zero given that S(E) = 0 when E = 0,

where ABH represents the area of the black hole horizon. Hence, it can be concluded
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for black holes that

TBH =
ℏK
2π

, SBH =
ABH

4ℏGN

(1.34)

It’s important to observe that as the mass m increases, the black hole temperature

TBH decreases, indicating a negative specific heat for the system.

C = T
∂S

∂T
=
∂E

∂T
< 0 (1.35)

General Black Holes

Theorem 1.2.5. No hair theorem: A stationary black hole, exhibiting asymptot-

ically flat behavior, is defined by its mass M , angular momentum J , and conserved

gauged charges (such as electric charges Q).

Now let’s summarize 4 laws of black hole thermodynamics:

• 0th law: K = surface gravity, remains constant across the horizon.

• 1st law:

dM =
K

8πGN

dA+ ΩdJ + ϕdQ (1.36)

⇒ dE = TdS + ΩdJ + ϕdQ (1.37)

Here, Ω denotes the angular frequency at the horizon, while ϕ represents

electric potential at the horizon (assumption: potential is 0 at infinity).

• 2nd law: In a classical context, the size of the horizon doesn’t diminish.

• 3rd law: It’s impossible to reduce the surface gravity of a black hole to zero
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through a finite number of steps.

Before Hawking’s breakthrough regarding black hole radiation, Bekenstein (1972-

1974) established the relationship SBH ∼ AH , aiming to uphold the 2nd law of

thermodynamics within systems containing black holes. With a conventional system

entering a black hole, its entropy becomes undetectable to an external observer,

thus leading to the formulation of the generalized second law (GSL):

dStot ≥ 0; Stot = SBH + Smatter

As a result, several puzzles or paradoxes arise:

1. Can the entropy of a black hole be interpreted statistically?

2. Does a black hole adhere to the principles of quantum mechanics?

The first question has been affirmed for diverse kinds of black holes within the

framework of string theory and holographic duality, indicating the presence of

organized internal states:

N ∼ e
ABH
4ℏGN (1.38)

The second inquiry pertains to Hawking’s information loss paradox, which can be

outlined as follows: Imagine a star is in its pure state collapsing to form a black

hole, subsequently emitting thermal radiation. When m ≫ mp, the radiation is

approximately thermal, resulting in minimal information about the initial state

being emitted. However, once a black hole’s mass becomes at the order of the

Planck mass (m ∼ O(mp)), it becomes too late for all the information to escape.
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Consequently, we move from a pure state to a thermal one described by a density

matrix, indicating the loss of information!



2
Holographic Duality

2.1 Holographic Principle

If we consider the black hole as a typical quantum mechanical entity, which leads

to a significant consequence known as the holographic principle.

Imagine an isolated system characterized by its mass E and entropy S0 in an

asymptotically flat spacetime. Let A denote the area of the smallest sphere that

encloses the system, and MA represent the mass of a black hole with a comparable

horizon area. It’s crucial that E < MA, as otherwise the system would already

constitute a black hole.

Upon adding MA − E energy to the system while maintaining A constant, we

25
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will inevitably yield a black hole with a mass of MA, since

SBH ≥ S0 + S ′ (2.1)

Here S ′ denotes the entropy of the added energy. Consequently, we deduce

S0 ≤ SBH =
A

4ℏGN

(2.2)

Put differently, the maximum entropy within a region confined by area A is given

by:

Smax =
A

4ℏGN

(2.3)

Consider the entropy definition: S = −Trρ log ρ, where ρ denotes the density

matrix of the system’s state. For a system with an N -dimensional Hilbert space:

Smax = logN (2.4)

Thus, the effective dimension of the Hilbert space for a system confined within a

region of area A is constrained by

logN ≤ A

4ℏGN

=
A

4l2p
(2.5)

**Holographic Principle**: In the realm of quantum gravity, a region bounded

by an area A can be fully characterized by a maximum of A
4ℏGN

= A
4l2p

degrees of

freedom.
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2.2 Expansion at large N in gauge theories

Now, let’s examine indications of holographic duality from the field theory perspec-

tive. Take, for instance, QCD, which can be depicted as an SU(3) gauge theory

featuring fundamental quarks. The Lagrangian can be expressed as

L =
1

g2YM

[
−1

4
TrFµνF

µν − iΨ(̸D −m)Ψ

]
(2.6)

Here, Dµ = ∂µ − iAµ, where Aµ represents 3× 3 Hermitian matrices and can be

expressed as Aµ = Aa
µT

a, with T a ∈ SU(3). In such a scenario, coupling becomes

strong in the infrared (IR) regime (ΛQCD ∼ 250 MeV), where there is no small

parameter for expansion. Deriving the IR properties of QCD from first principles

remains an open challenge.

In 1974, t’ Hooft proposed treating the number of colors N = 3 as a parameter,

thereby promoting Aµ to N × N Hermitian matrices and considering the limit

N → ∞ with a 1
N

expansion. This was a clever idea. However, despite efforts,

QCD remains unsolved at the leading order in the large N limit. N.b: QCD is still

difficult to study in this way because N = 3 is not a large number and the quarks

in QCD are in fundamental representation. Surprisingly, a correspondence between

the large N gauge theory and string theory emerged, with the key insight being

the matrix nature of fields. To illustrate, let’s consider a scalar theory:

L = − 1

g2
Tr

[
1

2
∂µΦ∂

µΦ +
1

4
Φ4

]
(2.7)

Here, g represents the coupling constant, and Φ(x) ≡ Φa
b(x) denotes an N × N
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Hermitian matrix. In component form, this can be expressed as

L = − 1

g2

[
1

2
(∂µΦ

a
b )(∂

µΦb
a) +

1

4
Φa

bΦ
b
cΦ

c
dΦ

d
a

]
(2.8)

L is invariant under U(N) global symmetry.

Remark 2.2.1. 1. This theory involves N2 scalar fields.

2. Alternative matrix types, such as N ×N real symmetric matrices, can also

be explored, leading to an SO(N) symmetry.

3. Introducing gauge fields enables the localization of the U(N) symmetry.

Below are the Feynman rules for this theory, starting with the propagator:

The fermion vertex:

Therefore, we can utilize the double-line notation here:
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2.2.1 Vaccum Energy

Let’s examine vacuum bubbles, which are diagrams without any external legs. The

most basic diagrams in the lowest order will be:

Figure 2.1: Vaccum Diagram

For diagram 1 of Fig. 2.1, each contracted index line contributes N , resulting

in a total contribution on the order of N3 (g
2)2

g2
= N3g2. For diagram 2 of Fig. 2.1,

with only one contracted line, the total contribution is on the order of Ng2. This

disparity arises due to the non-commutativity of the matrices. In the first scenario,

the diagram can be depicted on a plane without line crossings, termed as a planar

diagram. Conversely, in the second scenario, the diagram cannot be represented on

a plane without line crossings, designated as a non-planar diagram.

If we examine the subsequent order in perturbation theory

Figure 2.2: First Order vacuum diagram
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The first diagram of Fig. 2.2 yields an order of N4g4, while the second diagram

results in an order of N2g4. We may delve into higher-order diagrams, but how

do we establish a general N -counting? Furthermore, how do we categorize all

non-planar diagrams?

To address these inquiries, we make two observations.

• Diagrams 2 and 4 can be depicted on a torus without line crossings.

Figure 2.3: Non-planar diagrams on a torus.

• The N -power for each diagram corresponds to the number of faces in the

diagram after straightening it out.

Indeed, any orientable two-dimensional surface is topologically categorized by an

integer h, denoted as the genus. This genus signifies the number of “holes” present

on the surface.

Figure 2.4: sphere (genus-0), torus (genus-1) and double torus(genus-2).

A topological property invariant to the manifold is the Euler characteristic:

χ = 2− 2h (2.9)
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where h is an integer representing the genus.

1. Any non-planar diagram can be unfolded (i.e., made non-crossing) on a surface

with genus h, an integer characteristic of the surface, but not on a surface

with a lesser genus.

2. In the case of any non-planar diagram, the degree of N arising from the

contraction of propagators corresponds to the count of faces present on a

surface characterized by genus h, representing the number of disjointed areas

separated by the diagram.

Typically, a vacuum diagram displays a dependence on g2 and N as follows:

A ∼ (g2)E(g2)−VNF (2.10)

Here, E represents the count of propagators, V denotes the number of vertices, and

F signifies the number of faces. This setup lacks a meaningful limit as N → ∞

or a 1
N

expansion due to the absence of an upper bound on F . However, t’ Hooft

suggests that we can approach the limit N → ∞, g2 → 0 while maintaining

λ = g2N constant. Then, if L represents the number of loops,

A ∼ (g2N)E−VNF+V−E = λL−1Nχ (2.11)

Theorem 2.2.2. For a surface constituted of polygons with F faces, E edges, and

V vertices, the Euler characteristic is defined as

χ = F + V − E = 2− 2h (2.12)
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As every Feynman diagram can be viewed as a division of the surface, thereby

segmenting it into polygons, the above theorem is applicable to our N -counting.

Therefore, in this limit, the leading order in N comprises the planar diagrams.

N2(c0 + c1λ+ c2λ
2 + · · · ) = N2f0(λ) (2.13)

As logZ encompasses the summation of all vacuum diagrams, including higher-order

1
N2 corrections, we can infer that:

logZ =
∞∑
h=0

N2−2hfh(λ) = N2f0(λ) + f1(λ) +
1

N2
f2(λ) + · · · (2.14)

The first term arises from the planar diagrams, while the subsequent terms originate

from the genus-1 diagrams and beyond.

There exists a heuristic approach to grasp logZ = O(N2) + · · ·. Given Z =∫
DΦeiS[Φ], we can reconfigure the Lagrangian as:

L =
N

λ
Tr

[
1

2
(∂Φ)2 +

1

4
Φ4

]
(2.15)

The trace operation likewise yields a factor of N , consequently L ∼ O(N2), leading

to logZ ∼ O(N2).

2.2.2 General Observables

Examining permitted operators in both theories reveals that in eq. (2.7), operators

such as Φa
b are permissible, despite lacking invariance under the global U(N)
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symmetry. However, in eq. (2.6), where operators must maintain gauge invariance,

Φa
b is disallowed. Consequently, in gauge theories like L = L(Aµ,Φ, · · · ), the

acceptable operators will be:

1. Single-trace operators include expressions such as Tr(FµνF
µν) and Tr(Φn).

2. Multiple-trace operators encompass combinations like Tr(FµνF
µν)Tr(Φ2),

Tr(Φ2)Tr(Φn)Tr(Φn), · · · .

We represent single-trace operators as Ok, where k = 1, . . . denotes different

operators. Multiple-trace operators take forms such as OmOn(x), Om1Om2Om3(x),

and so forth. Consequently, general observables consist of correlation functions of

gauge-invariant operators, with our focus primarily on local operators:

⟨O1(x1)O2(x2) · · · On(xn)⟩c (2.16)

Given our focus on the t’Hooft limit, we aim to understand the scaling behavior of

correlations (as per Eq. (2.16)) in the large N limit. To explore this, we employ a

strategy:

Z [J1, · · · , Jn] =
∫

DAµDΦ · · · eiSeff =

∫
DAµDΦ · · · e[iS0+iN

∑
i

∫
Ji(x)Oi(x)]

(2.17)

Then the correlation (Eq. (2.16)) can be expressed as

⟨O1(x1)O2(x2) · · · On(xn)⟩c =
δnlogZ

δJ1(x1) · · · δJn(xn)
∣∣
J1=···=Jn=0

1

(iN)n
(2.18)

Applying eq. (2.16) on eq. (2.14) we get,
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⟨I⟩ ∼ O(N2) +O(N0) + · · · (2.19)

⟨O⟩ ∼ O(N) +O(N−1) + · · · (2.20)

⟨O1O2⟩c ∼ O(N0) +O(N−2) + · · · (2.21)

⟨O1O2O3⟩c ∼ O(N−1) +O(N−3) + · · · (2.22)

All leading order contributions arise from planar diagrams.

Physical Implications :

1. In the large N limit, O(x)|0⟩ can be understood as generating a single-particle

state (referred to as a "glue ball"). Similarly, : O1 · · · On(x) : |0⟩ denotes an

n-particle state.

2. The fluctuations of “glue balls” are diminished.

3. If we regard it as the "scattering amplitude" of n "glueballs", then at the

leading order in N → ∞, the scattering involves only tree-level interactions

(essentially classical) among the glueball states.

(a) Consider
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If we consider it as a fundamental vertex with coupling g̃, then the

tree-level amplitude for n-particle scattering scales as g̃n−2 ∼ N2−n.

(b) We can also incorporate higher-order vertices, but they must adhere to:

(c) There can be at most one-particle intermediate states. When we insert

a complete set of states at all possible locations, the large N counting

implies that all states other than single-particle ones are suppressed:

Compared to

i.e. all “loops” of glue balls are suppressed.

More explicitly,

Gauge theory with finite ℏ in the N → ∞ limit = Glue ball theory

Perturbative expansion in 1/N = Loops of glue balls perturbative in ℏ
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2.3 Large N Expansion As a String Theory

Quantum field theory (QFT) can be viewed as a framework describing "particles."

While the conventional method of quantization is second quantization, first quan-

tization directly involves quantizing the motion of a particle in spacetime. This

involves

Z =

∫
DXµ(τ)eiSparticle (2.23)

Where,

Sparticle = m

∫
dl = m

∫
dτ
dl

dτ
= m

∫
dτ

√
gµν

dXµ

dτ

dXν

dτ
(2.24)

To incorporate interactions such as λϕ3, we have to introduce them manually.

2.3.1 String Theory

Similarly, in string theory, we must quantize the motions of strings in space-time
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The most basic expression for Sstring is the Nambu-Goto action.

SNG = T

∫
Σ

dA (2.25)

In this context, T = 1
2πα′ represents the string tension, which is the mass per unit

length. The differential area dA =
√

−det(hab)dσdτ corresponds to the infinitesimal

area of the world sheet, calculated using the induced matrix hab = gµν∂aX
µ∂bX

ν .

To establish and compute eq. (2.23), the most practical approach is to transition

to Euclidean signature. For vacuum processes:

Zstring =
∑

all closed surfaces

e−SNG =
∞∑
h=0

e−λχ
∑

surfaces with given topology

e−SNG (2.26)

In this context, χ = 2− 2h represents the weight associated with various topologies,

where λ serves as an analog to a “chemical potential” for topology. If we express gs

as eλ, the vacuum encompasses diagrams such as

The surface acts as a vacuum bubble, where the string initiates from the vacuum

at the south pole and merges back into it at the north pole. Torus, representing

a one-loop diagram, the string splits into two before rejoining, with each vertex

interaction strength gs. Hence, the primary interaction points involve string splitting

and recombination, with the coupling strength denoted as gs = eλ.
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We now introduce external strings, such as:

string + string → string + string (2.27)

In the graphical representation:

Here, χ = 2− 2h− n, where n represents the count of boundaries (the number

of external strings).

Therefore, for a scattering process involving n strings (which includes vacuum

processes, i.e., when n = 0)

An =
∞∑
h=0

gn−2+2h
s F (h)

n = gn−2
s F (0)

n︸ ︷︷ ︸
tree-level diagrams
(sphere topology)

+ gnsF
(1)
n︸ ︷︷ ︸

1-loop diagrams
(torus topology)

+ gn+2
s F (2)

n︸ ︷︷ ︸
2-loop diagrams

(double torus topology)

(2.28)
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Now, in relation to our earlier discussion on the large N expansion of a gauge theory

(including n = 0)

⟨O1(x1)O2(x2) · · · On(xn)⟩c =
∞∑
h=0

N2−n−2hf (h)
n

= N2−nf (0)
n︸ ︷︷ ︸

planar diagrams
(sphere topology)

+ N−nf (1)
n︸ ︷︷ ︸

torus diagrams

+N−n−2f (2)
n︸ ︷︷ ︸

double-torus
diagrams

(2.29)

Upon comparing eq. [(2.28)] and [(2.29)], we observe a consistent mathematical

framework in both theories, with the correspondence:

eλ = gs ↔ 1
N

external strings ↔ “glue balls” (single trace operator) Oi(x) |0⟩

sum over string sum over Feynman

world sheet of given topology ↔ diagrams of given topology

topology of the world sheet ↔ topology of Feynman diagrams

Remember that each Feynman diagram can be viewed as a partition of a surface

with genus-h. The scattering amplitude of n particles on a surface with genus-h

can be expressed as:

f (h
n =

∑
all Feynman diagrams of genus-h

G =
∑

all possible triangulations of genus-h surface

G (2.30)

In this context, G denotes the representation for each diagram. Likewise, in string

theory, we encounter n-string scattering phenomena.
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F (h
n =

∫
genus h surfaces

with n boundaries

DXe−Sstring =
∑

all possible triangulations of
genus-h surfaces with n boundaries

e−Sstring (2.31)

If we manage to associate G with a certain e−Sstring , we would consequently obtain:

a large N gauge theory = a string theory

1
N

expansion = perturbative expansion in gs

large N limit (classical theory of glue-balls) = classical string theory

single-trace operators (glueballs) = string states

Indeed, achieving this identification poses challenges:

• String theory operates within a continuous framework, whereas Feynman

diagrams, at best, offer a discrete rendition (such as the triangulation of the

manifold).

• The action Sstring establishes a mapping from the world sheet Σ to the

target space M (the spacetime manifold) (σ, τ) → Xµ(σ, τ). Within such

a mapping, we encounter options regarding the spacetime manifold M, the

specific formulations of the action Sstring, and the possibility of “internal”

degrees of freedom residing on the world sheet without direct spacetime

correspondence. For instance, these could entail superstrings, involving

fermions on the world sheet.
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Generalizations:

1. Up to this point, our focus has primarily been on matrix-valued fields, specifi-

cally fields within the adjoint representation of the U(N) gauge group. However,

one could incorporate fields in the fundamental representation (quarks).

q =



q1

q2

...

qN


e.g. within vacuum diagrams, loops of quarks are now considered, which can

be categorized topologically by 2D surfaces with boundaries. This scenario

corresponds to a string theory encompassing both open and closed strings.

2. Up to this point, we focused on the U(N) gauge group.

If we were to examine SO(N) or SP(N) instead, there would be no divergence

between the two indices of the fields.

Consider, for example, the large N extension of QCD in 3+1 dimensional Minkowski

spacetime. If the 1
N

expansion could be characterized by a string theory, what

implications would this hold?
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A straightforward assumption would be a string theory situated in 3+1 dimen-

sional Minkowski space.

ds2 = −dt2 + dx⃗2 (2.32)

We could explore either the Nambu-Goto action or the Polyakov action, which are

classically equivalent to SNG. However, this approach proves ineffective:

1. This type of string theory exhibits inconsistencies unless D (the dimension of

spacetime) equals either 10 or 26.

2. Consider a string theory in 10 dimensions with M4 ×N , where N represents

a compact manifold. This theory includes a massless spin-2 particle (graviton)

in M4, a feature absent in Yang-Mills theory.

To address this issue, we can explore either more unconventional string actions or

alternative target spaces. Indeed, there are indications suggesting the consideration

of a 5-dimensional string theory:

1. Holographic principle: String theory inherently includes gravity. In accor-

dance with the holographic principle, the gravitational aspect of this theory

is ideally represented in five dimensions for consistency.

2. The consistency of string theory itself: It needs the inclusion of a

Liouville mode, which acts as an additional dimension.

In the context of a 5-dimensional spacetime, a string Y should exhibit all the

symmetries found in 4-dimensional Yang-Mills theories, such as translations and

Lorentz symmetries.
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ds2 = a2(z)
[
dz2 + ηµνdX

µdXν
]

(2.33)

This is the most general metric compatible with 4-dimensional Poincaré symmetries.

However, if a theory exhibits conformal or scale invariance. Eq. (2.33) should

represent the AdS metric. It is invariant under scaling transformations:

Xµ = λXµ (2.34)

This implies that z transforms as z → λz, and a(λz) = 1
λ
a(z), indicating a(z) = R

z

with a constant R. Finally, as a concluding note, let’s outline the historical journey

leading to the discovery of holographic duality.

1974 (continued)

Lattice QCD (Wilson), confining

strings

1993-1994

Holographic principle

(t’ Hooft, Susskind)

1997 June

Need 5D string theory to describe QCD

(Polyakov)

1995

D-branes (Polchinski)

1997 Nov

AdS/CFT (Maldacena)

1998 Feb

Connection between holographic prin-

ciple and large N gauge theory/string

theory duality (Witten)
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3
AdS/CFT Conjecture

3.1 String Theory in the Perturbative (Bosonic) Regime

3.1.1 Overall Framework

Think about a string moving in a spacetime denoted as M, characterized by a

metric (µ, ν = 0, 1, ..., d− 1) :

ds2 = GµνdX
µdXν (3.1)

With the world-sheet Σ parametrizations (a = 0, 1):

Xµ(σ, τ) = Xµ(σa) (3.2)

45
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The induced metric on Σ is written as:

hab = Gµν∂aX
µ∂bX

ν , ds2 = hab(σ, τ)dσ
adσb (3.3)

The action of the string is determined to be directly related to the area enclosed

by Σ, expressed in the Nambu-Goto format as follows:

SNG[X
µ] =

1

2πα′

∫
Σ

dA =
1

2πα′

∫
Σ

d2σ
√
−h; [α′] = L2 → α′ = l2s , T =

1

2πα′

(3.4)

where ls represents the length scale of the string (derived from dimensional analysis),

and T stands for the string tension. Here, d2σ = dσdτ .

Because the non-polynomial structure of SNG poses difficulties in calculations,

it is more convenient to utilize Polyakov’s action, which, at the classical level, is

equivalent to the Nambu-Goto action. For calculation see A.1 :

SP [γ
ab, X] =

1

4πα′

∫
d2σ

√
−γγab∂aXµ∂bX

νGµν ; γab ≡ γab(σ, τ) (3.5)

Equation of Motion for γab:

γab =
λ

2
hab (3.6)

In this context, λ represents an arbitrary function. Thus, we have γabhab = 2
λ
×2 and

√
−γ = λ

2

√
−h. Eq. (3.5) takes on the structure resembling that of a 2-dimensional

scalar field theory within the curved spacetime Σ characterized by the metric γab.
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The quantization of the string path integral will adhere to this framework.

∫
DγabDXµeiSP [γab,Xµ] . . . (3.7)

To gain a better understanding of the physical spectrum of strings, canonical

quantization proves to be a more suitable approach. The Polyakov Lagrangian:

SP =

∫
Σ

d2σLP (3.8)

Symmetries of eq. (3.5) :

1. Global Poincare transformation (translation and Lorentz rotation):

Xµ(σ, τ) → Xµ + aµ; Xµ → Λµ
νX

ν (3.9)

2. Local diffeomorphism transformation (σa → σ′a) :

Xµ(σ, τ) → X ′µ(σ′, τ ′) = Xµ(σ, τ); γab → γ′
ab
=
∂σ′a

∂σc

∂σ′b

∂σd
γcd(σ, τ) (3.10)

3. Local Weyl transformation:

γab → e−2ω(σ,τ)γab(σ, τ) (3.11)

These symmetries (Poincaré and Diff × Weyl) can serve as the guiding principles

that (almost) uniquely determine the string action in eq. (3.5). For instance,

when considering a topological invariant of 2D oriented closed surfaces, the 2D



48 Chapter 3 - AdS/CFT Conjecture

Einstein-Hilbert action also aligns with this criterion.

Sχ[γ
ab] = λ

(
1

4π

∫
Σ

d2σ
√
−γR

)
= λχ (Σ) ; χ (Σ) = 2− 2g (3.12)

Here, R = Ricci scalar.

3.2 Light-Cone Quantization

Every distinct oscillation mode exhibited by a string correlates with a particle

existing within space-time. In the case of massless modes, a closed string represents

a spin 2 particle (such as the graviton), while an open string represents a spin 1

particle (like a gauge particle, such as the photon or gluon).

The process of canonical quantization involves the following steps:

1. Formulate the classical equation of motion.

2. Address the gauge symmetries.

3. Determine the entire set of classical solutions.

4. Elevate classical fields (on the world-sheet) to quantum operators, adhering

to canonical quantization criteria. The classical solutions then transform into

solutions to operator equations, and the parameters within classical solutions

transition into creation and annihilation operators.

5. Extract the spectrum by applying creation operators to the vacuum of the

(2D world-sheet) theory.
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The classical equation of motion from eq. (3.5)

1. For γab :

0 = Tab = ∂aX
µ∂bXµ −

1

2
γabγ

cd∂cX
µ∂dXµ (3.13)

2. For Xµ :

∂a
(√

−γγab∂bXµ
)
= 0 (3.14)

Through diffeomorphism, the metric can be transformed into the conformally flat

form γab = e2ω(σ,τ)ηab, and Weyl rescaling enables the attainment of γab = ηab. Now,

referring to equation (3.14)

∂2τX
µ − ∂2σX

µ = 0 (3.15)

From eq. (3.13), we get,

T00 = T11 =
1

2
(∂τX

µ∂τXµ + ∂σX
µ∂σXµ) = 0 (3.16)

Tτσ = Tστ = ∂τX
µ∂σXµ = 0 (3.17)

Equations (3.16) and (3.17) represent the Virasoro constraints. In the case of an

open string with Neumann boundary conditions ∂σXµ(σ = 0, π; τ) = 0, equation

(3.15) can be readily resolved (xµ, vµ can be arbitrary constants):

Xµ(σ, τ) = xµ + vµτ +Xµ
R(τ − σ) +Xµ

L(τ + σ) (3.18)

In the scenario of closed strings, XR and XL represent independent periodic func-

tions over the interval of 2π. When implementing Neumann boundary conditions
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for open strings, we obtain

X ′
L(τ) = X ′

R(τ) at σ = 0 (3.19)

X ′
L(τ − π) = X ′

R(τ + π) at σ = π (3.20)

We get XL = XR and is periodic in 2π.

3.2.1 Light Cone Gauge

Even after determining the worldsheet metric, there remains additional gauge

freedom known as conformal symmetry. Let’s introduce:

σ± =
τ ± σ√

2
; ds2 = −dτ 2 + dσ2 = −2dσ+dσ− (3.21)

Therefore, this symmetry can be interpreted as the preservation of γab = ηab

(subject to a Weyl rescaling) as:

σ+ → σ̃+ = f(σ+); σ− → σ̃− = g(σ−); ds2 → −2∂+f∂−gdσ
+σ− (3.22)

τ̃ =
f(τ + σ) + g(τ − σ)√

2
⇒ τ (3.23)

If this matches the classical solution of Xµ, one can fully specify the gauge by

selecting suitable functions f and g such that:

τ =
X+

v+
; X± =

X0 ±X1

√
2

(3.24)



3.2 Light-Cone Quantization 51

This gauge is termed the light-cone gauge, as it sets the worldsheet time according

to the spacetime light-cone coordinate. With Xµ = (X+, X−, X i) (the transverse

directions i = 2, 3, · · · , d− 1): dXµdXµ = −2dX+dX− + dX idX i. In this gauge,

the Virasoro constraints (3.16) and (3.17) simplify,

2v+∂τX
− =

(
∂τX

i
)2

+
(
∂σX

i
)2 (3.25)

v+∂σX
− = ∂σX

i∂σX
i (3.26)

The degrees of freedom that are independent are denoted by X i. Due to the “wrong”

sign in its kinetic terms, X0 among these degrees of freedom doesn’t effectively

address a unitarity issue at the quantum level.

Expanding equation (3.18) in a Fourier series, in the case of closed strings, we

obtain

Xµ(σ, τ) = Xµ + vµτ + i

√
α′

2

∑
n̸=0

1

n

(
αµ
ne

−in(τ+σ) + α̃µ
ne

−in(τ−σ)
)

(3.27)

It’s similar for open string, but from Xµ
R = Xµ

L one arrives at αµ
n = α̃µ

n :

Xµ(σ, τ) = Xµ + vµτ + i
√
2α′
∑
n̸=0

1

n
αµ
ne

−inτ cosnσ (3.28)

The center of mass motion can be determined by computing the average position

of the strings across a particular time slice (l = 2π for closed strings and l = π for

open strings):

1

l

∫ l

0

dσXµ(σ, τ) = xµ + vµτ (3.29)

The parameter vµ is associated with the velocity of the strings’ center of mass.
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The classical coefficients αµ
n and α̃µ

n monitor the oscillation patterns of the strings.

While closed strings exhibit distinct left-moving and right-moving components,

open strings can be likened to standing waves, implying that left-moving and

right-moving contributions are equivalent.

In the light-cone gauge, X+ = v+τ , and X− is obtained by expanding X− in a

Fourier series. By substituting equations (3.27) and (3.28) into equations (3.25)

and (3.26), and then equating the coefficients of different Fourier modes, X− is

determined. The zeroth (non-oscillating) mode establishes the relationship between

the velocity of the strings’ center of mass and the strings’ oscillation modes.

2v+v− = v2i + 2α′
∑
m̸=0

αi
−mα

i
m (open) (3.30)

2v+v− = v2i + α′
∑
m̸=0

(
αi
−mα

i
m + α̃i

−mα̃
i
m

)
(closed) (3.31)

The Poincaré global symmetries present in the action correspond to conserved

currents on the worldsheet. For now, let’s focus on translation and employ the

conventional Noether method:

Πµ
a =

1

2πα′∂aX
µ (3.32)

It’s worth mentioning that ∂aΠµ
a = 0, a consequence of the equation of motion for

Xµ. Πµ
τ represents the momentum density along the string, and the associated

conserved current signifies the string momentum in space-time:

pµ =

∫ l

0

dσΠµ
τ =

l

2π

vµ

α′ (3.33)
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The mass squared is linked to the spacetime momentum of the strings, characterized

by the mass shell condition: M2 = −pµpµ = 2p+p− + p2i

M2 =
1

2α′

∑
m̸=0

αi
−mα

i
m (open) (3.34)

M2 =
1

α′

∑
m̸=0

[
αi
−mα

i
m + α̃i

−mα̃
i
m

]
(closed) (3.35)

3.2.2 Quantization :

Once the classical behavior of the strings has been comprehended, the subsequent

stage involves quantization - namely, quantizing the independent degrees of freedom

X i(σ, τ) (alongside their canonical momentum density Πi) within the action:

S = − 1

4πα′

∫
d2σ∂aX i∂aX

i; Πi =
1

2πα′∂τX
i (3.36)

Designate X i as a quantum operator, with the canonical commutation relation on

a specific time slice:

[
X i(σ, τ), Xj(σ′, τ)

]
=
[
Πi(σ, τ),Πj(σ′, τ)

]
= 0;[

X i(σ, τ),Πj(σ′, τ)
]
= iδijδ(σ − σ′)

(3.37)

The outcomes indicate that the zeroth mode xi, pi, and the oscillation modes αi

and α̃i are all transformed into operators:

[
xi, pj

]
= iδij;

[
αi
n, α

j
m

]
=
[
α̃i
n, α̃

j
m

]
= nδijδn+m,0

(3.38)

It’s important to recognize that αi and α̃i can be associated with creation and
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annihilation operators:

1√
n
αi
n = ain;

1√
n
αi
−n =

(
ai−n

)†
;

1√
n
α̃i
−n =

(
ãi−n

)†
;

1√
n
α̃i
n = ãin (3.39)

Hence, the vacuum state of the oscillator (indexed by string spacetime momentum

pµ) meets:

αi
n |0, pµ⟩ = α̃i

n |0, pµ⟩ = 0, n > 0 (3.40)

Excited states can be constructed using creation operators (αi
−n, α̃

i
−n with n > 0) :

αi1
−n1

αi2
−n2

· · · α̃j1
−m1

α̃j2
−m2

· · · |0, pµ⟩ (3.41)

Define the operator for the number of oscillations for closed strings (no summation

in the index i, and the order of operators is crucial).

N i
n =

1

n
αi
−nα

i
n; Ñ i

n =
1

n
α̃i
−nα̃

i
n

(3.42)

The quantum expression for the mass shell condition of closed strings is given by:

M2 =
2

α′

D−1∑
i=2

∑
n̸=0

n
(
N i

n + Ñ i
n

)
+ a0 (3.43)

The constant a0 represents the zero-point energy for closed strings, derived from

rearranging the operator to normal order.

a0 =
2(D − 2)

α′

∞∑
n=1

n = −(D − 2)

24

4

α′ (3.44)

Similarly for open string,
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M2 =
1

α′

D−1∑
i=2

∞∑
m=1

mN i
m + a0 (3.45)

The constant a0 is determined as:

a0 =
(D − 2)

2α′

∞∑
n=1

n = −(D − 2)

24

1

α′ (3.46)

The spectrum of the string can be determined by observing that each state of the

string corresponds to a particle state in spacetime.

Let’s begin by examining the particle composition of open strings:

1. The oscillation vacuum state is:

|0, pµ⟩ ; N i
m = 0; ∀m, i (3.47)

The spacetime transformation of this state implies it should be a scalar with

mass: M2 = −D−2
24α′ . When D > 2, this particle is a tachyon since M2 < 0.

2. The first excited state of oscillation transforms into a SO(D− 2) vector under

spacetime rotations: αi
−1 |0, pµ⟩, withM2 = −D−2

24α′ . Given that the first excited

state is a vector with only D − 2 independent components, for consistency

with Lorentz symmetries or the quantization process, it should be massless:

M2 = 0 ⇒ D = 26. This outcome for the spacetime dimension is referred

to as the critical dimension of (bosonic) string theory. The coherent state

formed by many of these particles in spacetime yields the field configuration

of a massless vector field Aµ, which later assumes the roles of a gauge boson

(such as the photon and gluon).
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3. Higher energy states are all massive and form multiplets with mass-squared

intervals of 1
α′ . The particle representation of the second excited state of the

string (massive) includes αi
−1α

j
−1 |0, pµ⟩, αi

−2 |0, pµ⟩, where M2 = 1
α′ .

Similarly, the particle composition of closed strings can also be deduced.

1. The oscillation vacuum state is:

|0, pµ⟩ ; N i
m = Ñ i

m = 0; ∀m, i (3.48)

The transformation of this state in spacetime suggests that it should be a

spacetime scalar with mass: M2 = −D−2
6α′ . As with the open string, when

D > 2, this particle is a tachyon due to M2 < 0.

2. The first excited state of oscillation is: (utilizing the level matching condi-

tion) αi
−1α̃

j
−1 |0, pµ⟩, with M2 = 26−D

6α′ . Only for D = 26, this state aligns

with the irreducible representations of SO(D − 2) of the Lorentz group

consistently (as massless M2 = 0 spin 2 particles), with further decomposi-

tion into scalar (trace), symmetric traceless, and antisymmetric components:∑24
i αi

−1α̃
i
−1 |0, pµ⟩, αi

−1α̃
j
−1eij |0, pµ⟩, αi

−1α̃
j
−1bij |0, pµ⟩. The coherent state

formed by many of these particles in spacetime represents the field config-

uration of a massless scalar field Φ (dilaton), a traceless symmetric tensor

field Gµν (graviton), and an antisymmetric tensor field Bµν (Kalb-Ramon, or

B-field), associated with gauge symmetries.

3. The higher-energy states are all massive, organized into multiplets with mass-

squared intervals of 4
α′ . For instance, the particle representation of the second
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excited state of the string (which is massive) includes αi
−1α

j
−1α̃

k
−1α̃

l
−1 |0, pµ⟩,

αi
−2α̃

k
−1α̃

l
−1 |0, pµ⟩, αi

−1α
j
−1α̃

k
−2 |0, pµ⟩, where M2 = 4

α′ . This aligns with the

description of massive spin 4 particles in D = 26 Lorentz irreducible groups,

forming complete multiplets of SO(25). The same consistency holds for

particles with higher spins (masses).

At energies significantly lower than 1
α′ , the behavior of Aµ and Gµν should be

dictated by Maxwell and Einstein’s theories. This assertion is supported by explicit

calculations of scattering amplitudes involving these particles in string theory

(gs ≪ 1). Additionally, we find that GN ∝ g2s and gs = e⟨Φ⟩.

Various quantization approaches exist without the presence of tachyons, and

IIA and IIB refer to prospective perturbative superstring theories. Both of them

mandate that the critical dimension be D = 10.

The massless fields of the closed superstring (bosonic) in spacetime are:

1. For IIA superstring:

Φ, Gµν , Bµν , Aµ, C
(3)
µνλ (3.49)

Aµ and C(3)
µνλ are the RR fields.

2. For IIB superstring:

Φ, Gµν , Bµν , χ, C
(2)
µν , C

(4)
µνλσ (3.50)

χ,C
(2)
µν and C(4)

µνλσ are the RR fields.

The effective field theories at low energies emerging from these superstring theories
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are known as IIA and IIB supergravity.

3.3 D-Branes

We encounter two significant boundary conditions:

1. The Dirichlet condition (D-condition) applied to the endpoints of open strings

(σend = 0, π) in spatial direction, where δX i = 0 → X i(σend, τ) = const.

2. The Neumann condition (N-condition) for the endpoints of open strings

(σend = 0, π), where ∂σδXµ = 0.

We’ll begin with the D-condition.

The implication is that the endpoint is confined to a hypersurface or a p-

dimensional surface, termed a “spacetime defect”, where open strings terminate.

This appears to be a degree of freedom distinct from the perturbative string

perspective. Such an entity is referred to as a D-brane, with a Dp-brane representing

a D-brane with p spatial directions.

Figure 3.1: D-brane
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1. Suppose in all directions we have

X0,1,··· ,D−2 = N for σ = 0, π (3.51)

XD−1 = a for σ = 0, π (3.52)

2. X0,1,··· ,p = N for σ = 0, π (3.53)

Xp+1,p+2,··· ,D−1 = a⃗ for σ = 0, π (3.54)

3. If the N-condition holds for the end of an open string in all directions, it

suggests an open string can end anywhere, termed as a space-filling brane

(like a D25-brane, as the number of spatial dimensions is 25 in bosonic string

theory) with complex dynamics. This implies that strings, initially closed,

can only open up at specific spacetime locations where D-branes reside.

4. In Lorentzian spacetime, the existence of a D(-1)-brane is untenable as it’s

not a stable entity; it only manifests momentarily in time. This is because

time in the target space cannot remain constant, rendering the condition X0

= const. impossible.

5. A D0-brane corresponds to a particle, while a D1-brane represents a string;

likewise, a D2-brane signifies a membrane, and so on.

6. When considering multiple D-branes, we encounter 4 distinct types of open

strings.
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X0,1,··· ,p = N for σ = 0, π (3.55)

Xp+1,p+2,··· ,D−1 = a⃗ for (σ = 0, τ)

(3.56)

= b⃗ for (σ = π, τ)

(3.57)

7. D-branes of different dimensions

XD−2 = N for (σ = 0, τ) (3.58)

XD−2 = a1 for (σ = π, τ) (3.59)

A Dp-brane disrupts the translational and Lorentz symmetries of the original

MinkD to Poincaré(1, p)× SO(D − 1− p).

What D-brane tells us ?

The presence of the D-brane leads to two significant insights. Firstly, it refines the

GKP-Witten relation:

ZN4 = ZAdS5×S5 (3.60)

Here, the left-hand side represents the partition function of N = 4 SYM, while the

right-hand side corresponds to the partition function of string theory on AdS5×S5.
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Secondly, through the D-brane, we derive the AdS/CFT dictionary. Often, the

S5 is compactified, leading to a five-dimensional gravitational theory known as

gauged supergravity.

The actual process of compactifying S5 is intricate, as is the complete gauged

supergravity action.
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4
Introduction

In Part 2, we shift our focus to the specific properties of anti-de Sitter (AdS)

spacetime and black holes within this framework. AdS spacetime, characterized

by its negative cosmological constant, serves as a crucial arena for studying the

AdS/CFT correspondence due to its rich geometric structure and well-understood

boundary behavior. Within this backdrop, we investigate the thermodynamic

properties of AdS black holes, their perturbations, and their quasi-normal modes.

By exploring various perturbations of AdS black holes, including scalar, vector,

electromagnetic, and gravitational perturbations, we aim to elucidate the stability

and dynamical behavior of these gravitational objects.

Furthermore, we employ novel techniques to calculate the quasi-normal modes
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of Kerr black holes, departing from traditional methods such as Leaver’s method.

By leveraging insights from AdS/CFT correspondence, we extend our analysis to

Kerr-Sen black holes, shedding light on Kerr BH’s quasi-normal modes and Love

numbers.



5
The AdS spacetime

So, what exactly is Anti-deSitter (AdS) spacetime?

AdSd+1 denotes a maximally symmetric spacetime characterized by negative

curvature. It emerges as a solution to Einstein’s equations featuring a negative

cosmological constant.

5.1 Spacetimes with constant curvature

Now, let’s contemplate spacetimes characterized by constant curvature. The AdS2

spacetime is capable of being embedded within a flat spacetime featuring two

timelike directions, as illustrated in Fig. 5.1.
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Figure 5.1: The inclusion of AdS2 within R2,1. Since the temporal axis t̃ displays periodic
behavior, we investigate the covering space.

ds2 = −dZ2 − dX2 + dY 2 (5.1)

−Z2 −X2 + Y 2 = L2 (5.2)

The parameter L is denoted as the AdS radius. AdS2 spacetime exhibits SO(2, 1)

symmetry. Similar to S2 and H2, we establish a coordinate system

Z = L cosh ρ cos t̃, X = L cosh ρ sin t̃, Y = L sinh ρ (5.3)

Then, the metric becomes

ds2 = L2(− cosh2 ρdt̃2 + dρ2) (5.4)

This coordinate system (t̃, ρ) is referred to as the global coordinates. Despite

embedding the AdS spacetime into a flat spacetime with two timelike directions X

and Y, the AdS spacetime itself possesses only one timelike direction.

From Eq. (5.3), it’s apparent that the coordinate t̃ exhibits periodicity 2π,

rendering the timelike direction periodic. This presents causal difficulties, leading
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to the customary unwrapping of the timelike direction and consideration of the

covering space of the AdS2 spacetime, where −∞ < t̃ < ∞. In the context of

AdS/CFT, this covering space represents the AdS spacetime. AdS2 spacetime

demonstrates a constant negative curvature R = −2/L2.

While AdS5 spacetime is often considered for applications involving AdS/CFT,

but the dS4 spacetime is typically preferred for cosmological applications.

5.2 Various coordinate systems of AdS spacetime

Up to this point, we’ve examined the AdS spacetime utilizing the global coordinates.

However, numerous other coordinate systems are found in the literature.

Static coordinates: (t̃, r̃). The coordinate r̃ is given by r̃ = sinh ρ. Conse-

quently, the metric transforms to:

dS2

L2
= −

(
r̃2 + 1

)
dt̃2 +

dr̃2

r̃2 + 1
(5.5)

This coordinate system proves beneficial for comparison with the AdS black hole.

Conformal coordinates: (t̃, θ). The coordinate θ is determined by tan θ =

sinh ρ with θ ranging from −π/2 to π/2. Consequently, the metric becomes flat

with an overall factor (conformally flat):

dS2

L2
=

1

cos2 θ

(
−dt̃2 + dθ2

)
(5.6)
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Figure 5.2: The AdS2 spacetime represented in conformal coordinates. Poincaré coordi-
nates only encompass a portion of the complete AdS spacetime, illustrated by the dark
shaded region (Poincaré patch).

The AdS spacetime is depicted in Fig. 5.2 within this coordinate framework.

Notably, the presence of a spatial "boundary" at θ = ±π/2 is crucial. This

boundary is referred to as the AdS boundary.

Poincare coordinates : (t, r) this coordinate system is defined by

Z =
Lr

2

(
−t2 + 1

r2
+ 1

)
(5.7)

X = Lrt (5.8)

Y =
Lr

2

(
−t2 + 1

r2
− 1

)
(5.9)

(r > 0, t : −∞ → ∞). The metric becomes

dS2

L2
= −r2dt2 + dr2

r2
(5.10)

This coordinate system is widely used in AdS/CFT applications. It also proves

beneficial for comparing with the AdS black hole.
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5.3 Maximally symmetric spacetimes

We observed that these spacetimes possess a multitude of symmetries akin to S2.

They are termed maximally symmetric spacetimes, accommodating the highest

count of symmetry generators. For instance, Minkowski spacetime, with constant

curvature (specifically R = 0), qualifies as a maximally symmetric space. The (p +

2)-dimensional Minkowski spacetime exhibits ISO(1, p+1) Poincaré invariance. The

total number of symmetry generators amounts to (p+ 1)(p+ 2)/2 for SO(1, p+ 1)

and (p + 2) for translations, thus totaling (p + 2)(p + 3)/2, representing the

maximum number of generators.
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6
The AdS black hole

Black holes have the potential to manifest within AdS spacetime. One of the most

basic examples of an AdS black hole is referred to as the Schwarzschild-AdS black

hole (hereafter abbreviated as SAdS black hole). Similar to the Schwarzschild black

hole, AdS black holes can be conceptualized with a spherical horizon, but our focus

here is on AdS black holes with a planar horizon or AdS black branes.

The SAdS5 black hole emerges as a solution to the Einstein equation within a

context of negative cosmological constant, akin to the AdS5 spacetime. The specific
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metric is expressed as follows:

ds25 = −
( r
L

)2
h(r)dt2 +

dr2(
r
L

)2
h(r)

+
( r
L

)2 (
dx2 + dy2 + dz2

)
(6.1)

Here, h(r) = 1−
(r0
r

)4
(6.2)

The horizon exists at r = r0. When r0 = 0, the metric simplifies to AdS5 spacetime.

The g00 component includes r40/(L2r2). The behavior of O(r−2) originates from

the Newtonian potential, following a r−2 pattern in five-dimensional spacetime.

Coordinates (x, y, z) represent R3. Unlike the Schwarzschild black hole, where

r2dΩ2 indicates a spherical horizon, here the r = r0 horizon extends indefinitely in

(x, y, z) directions. Despite AdS spacetime’s constant curvature, SAdS5 black hole

deviates, marked by a curvature singularity at r = 0.

6.1 Thermodynamic quantities of AdS black hole

Here, we analyze the thermodynamic properties of the SAdS5 black hole, which, in

AdS/CFT correspondence, correspond to the thermodynamic characteristics of the

dual N = 4 SYM theory at strong coupling. To bridge black hole outcomes with

gauge theory results, establishing parameter relations between the two theories is

essential.

N2
c =

π

2

L3

G5

, λ =

(
L

ls

)4

(6.3)

These connections are referred to as the AdS/CFT correspondence. On the left

side, gauge theory parameters are expressed in relation to gravity parameters on

the right side.
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First, the temperature is given by

T =
f ′(r0)

4π
(6.4)

=
1

4π

1

L2

(
2r +

2r40
r3

) ∣∣
r=r0

(6.5)

=
1

π

r0
L2

(6.6)

For this black hole, the horizon extends infinitely, resulting in divergent entropy.

Hence, using entropy density s is more appropriate. Spatially, the black hole is

confined within 0 ≤ x, y, z ≤ Lx, Ly, Lz, acting as an infrared cutoff. The gauge

theory volume, V3 := LxLyLz, is distinguished from the horizon "area" due to the

line element (r/L)2(dx2 + dy2 + dz2). From area law

S =
A

4G5

=
1

4G5

(r0
L

)3
V3 (6.7)

⇒ s =
S

V3
=

1

4G5

(r0
L

)3
(6.8)

=
a

4G5

(6.9)

Here, a = A/V3 represents the “horizon area density”. Employing the temperature

(6.6) and the AdS/CFT dictionary, we obtain:

s =
π2

2
N2

c T
3 (6.10)

Other thermodynamic properties can be established through related principles. For

example, utilizing the first law, dε = Tds, we can derive the energy density as

shown below:

ε =
3

8
π2N4

c T
3 (6.11)
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By employing the Euler relation, ε = Ts − P , the pressure can be deduced as

P = 1
3
ε.

6.2 AdS Black Holes and Thermality

Let’s initiate a conceptual experiment. Imagine a CFT residing on the Lorentzian

cylinder R× Sd−1, gradually raising its temperature. As the dilatation operator

acts as the Hamiltonian, with increasing temperature, the CFT transitions into a

state characterized by larger operator/state dimensions.

Given the identical Hilbert space of AdS to that of the CFT, we interpret our

heated CFT as a thermal state in AdS. However, what constitutes this state? At

lower temperatures, it comprises a thermal gas of light particles in AdS, predomi-

nantly confined to the central region. Yet, as temperature rises, more energy is

confined to a relatively fixed-sized region. In the realm of dynamic gravity, this

process is finite – at a critical temperature Tc, the hot gas collapses to form a

black hole in AdS. This thought experiment illustrates that black holes in AdS

correspond to a heated CFT.



7
Properties of AdS Black Holes

7.1 How anti-de Sitter black holes reach thermal equilibrium

In recent years, extensive research has focused on black holes within anti-de Sitter

(AdS) spacetimes, driven by their significance in holography (gauge/gravity duality).

These black holes exhibit distinct characteristics compared to their asymptotically

flat counterparts. Notably, their event horizon isn’t confined to a spherical shape;

hyperbolic or toroidal horizons are also valid solutions to the Einstein field equations.

Despite variations in horizon topology, AdS black holes display markedly different

thermodynamic behaviors from asymptotically flat ones. The Hawking temperature
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in d-dimensions is given by the formula [1] (with units G = c = ℏ = kB = 1)

T =
k(d− 3)L2 + (d− 1)r2h

4πL2rh
, (7.1)

Here, k = +1, 0,−1 corresponds to horizons that are positively curved, flat, and

negatively curved, respectively, while rh represents the radial position of the event

horizon. For sufficiently large black holes, where the horizon size exceeds the

AdS curvature length scale (rh > L), the temperature scales directly with rh. In

other words, large AdS black holes are "hot" 1. This is in stark contrast to the

asymptotically flat Schwarzschild black hole, whose temperature scales inversely

with its mass (and therefore size).

Furthermore, asymptotically locally AdS spacetimes possess a timelike boundary

at spatial infinity. Interestingly, null geodesics originating from within the bulk can

intersect the boundary and return within a finite affine parameter interval (and

also within a finite coordinate time t, if canonical Schwarzschild-like coordinates

are utilized). To illustrate this phenomenon, let’s consider the k = 0 scenario,

commonly employed in holography. Henceforth, we will denote such black holes as

"flat black holes".

Assuming the absence of a black hole, consider the metric tensor

ds2 = − r2

L2
dt2 +

L2

r2
dr2 + r2

(
d−2∑
i=1

(dxi)2

)
, (7.2)

The metric tensor straightforwardly depicts a flat representation of the maximally
1Although the temperature of AdS black holes may appear exceedingly high in terms of global geometry,

local observers do not perceive thermal radiation at such Hawking temperature. With this nuance in
consideration, we will refrain from using quotation marks around the terms "hot" or "cold" henceforth.
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symmetric AdS spacetime. However, this coordinate system becomes inadequate

at the center r = 0, hence we focus on r = ε > 0, where ε is small. The elapsed

proper time between two events situated at r = ε is (ε/L)∆t, where ∆t denotes

the time taken by a photon traveling from r = ε to ∞ and back is

∆t = 2

∫ ∞

ε

L2

r2
dr =

2L2

ε
. (7.3)

This duration is finite, although large. The proper time experienced by the static

observer amounts to 2L. It’s noteworthy that ε becomes irrelevant in the proper time

calculation, consistent with the arbitrary nature of the AdS "center". Consequently,

with a reflective boundary condition, Hawking photons are reflected back into the

black hole, enabling a sufficiently large black hole to reach thermal equilibrium.

(Another implication is the nonlinear instability of AdS: remarkably, a wide range

of perturbations, regardless of their smallness, can be reflected and focused back in

the bulk, potentially leading to black hole formation.) [2]

In the case of k = 1, even small black holes exhibit high temperatures (T ∼ 1/rh

according to Eq.(7.1)), akin to small asymptotically flat Schwarzschild black holes.

Due to the time required for Hawking radiation to reach the boundary and reflect

back, these small black holes can evaporate entirely before achieving thermal

equilibrium. Put differently, while large black holes (with positive specific heat)

are stable, small black holes (with negative specific heat) are inherently unstable.

This stability criterion could theoretically define "large" and "small" black holes.

While this criterion aligns with using either mass or horizon size greater than L to

define black hole "size" in the k = 1 scenario, it’s not applicable for the k = 0 case

focused on in this study. For k = 0 black holes, regardless of size, the Hawking
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temperature is proportional to rh, implying that small flat black holes are cold,

i.e., they evaporate slowly. Consequently, small black holes have the potential to

attain thermal equilibrium with their Hawking radiation. Thus, if we were to use

stability/specific heat to define its "size", all k = 0 black holes would be considered

"large". Hence, we use rh > L as the criterion to define a large black hole.

Moreover, since the boundary condition can be altered to a completely absorptive

one, negating thermal equilibrium, we opt for a definition independent of boundary

conditions. That is, a large black hole would retain its "largeness" regardless of

boundary condition alterations. Given a fixed black hole in the bulk, there is a delay

for radiation to reach the boundary and return. Until the radiation reaches the

boundary (and potentially reflects back or is absorbed depending on the boundary

condition), the black hole remains unaware of its potential to reach equilibrium.

Therefore, a local criterion that defines black hole size at any given time, even prior

to the emission of the first Hawking radiation (allowing us to discuss whether an

initially "large" black hole can transition into a "small" one or remains "large",

even in the k = 1 scenario), proves more practical. Defined in this manner, large

flat black holes can dissipate into a small black hole in thermal equilibrium with

their Hawking quanta2.

7.2 Perturbations of anti-de Sitter black holes

Quasi-normal modes (QNMs) dictate the disturbances of a black hole, often deter-

mined by solving a wave equation for minor fluctuations in the background of the
2Gibbons and Perry proposed that black holes can maintain thermal equilibrium with a heat bath

despite particle interactions, although their study is limited to the asymptotically flat scenario, suggesting
the conclusion’s generality.
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black hole, ensuring inward flux at the horizon and outward flux at infinity.

7.2.1 Perturbations

In this section, I examine scalar, gravitational, and electromagnetic perturbations

of a d-dimensional AdS Schwarzschild black hole, analytically deriving the QNM

spectrum in the high-frequency range. A discussion of low overtones will follow in

the subsequent section. The metric describing an AdS Schwarzschild black hole is

ds2 = −
(
r2

l2
+K − 2µ

rd−3

)
dt2 +

dr2

r2

l2
+K − 2µ

rd−3

+ r2dΣ2
K,d−2 (7.4)

I will select units such that the AdS radius l = 1. The radius of the horizon r+ and

the Hawking temperature TH are then, respectively,

2µ = rd−1
+

(
1 +

K

r2+

)
, TH =

(d− 1)r2+ +K(d− 3)

4πr+
(7.5)

The mass and entropy of the hole are, respectively,

M = (d− 2)(K + r2+)
rd−3
+

16πG
V ol(ΣK,d−2), S =

rd−2
+

4G
V ol(ΣK,d−2) (7.6)

The parameter K dictates the curvature of the horizon and the boundary of AdS

space. For K = 0,+1,−1, we encounter, respectively, a flat (Rd−2), spherical

(Sd−2), and hyperbolic (Hd−2/Γ, refers to a topological black hole with a hyperbolic

horizon, where Γ denotes a discrete group of isometries.) horizon (boundary).
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The harmonics on ΣK,d−2 adhere to the equation,

(∇2 + k2)T = 0 (7.7)

When K = 0, k represents the momentum; whereas for K = +1, the eigenvalues

are quantized.

k2 = l(l + d− 3)− δ (7.8)

Conversely, for K = −1,

k2 = ξ2 +

(
d− 3

2

)2

+ δ (7.9)

where ξ is discretized for non-trivial Γ. δ = 0, 1, 2 corresponds to scalar, vector, or

tensor perturbations, respectively.

Scalar perturbations:

To determine the asymptotic behavior of QNMs, we must derive an approximation

to the wave equation that holds in the high-frequency range. In three dimensions,

this derived wave equation is exact (a hypergeometric equation). In five dimensions,

I will transform the Heun equation into a hypergeometric equation, enabling the

derivation of an analytical expression for the asymptotic form of QNM frequencies

consistent with numerical findings.

AdS5: Focusing solely on the scenario of a large black hole, the massless scalar
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wave equation appears as follows:

1

r3
∂r(r

5f(r)∂rΦ)−
1

r2f(r)
∂2tΦ− 1

r2
∇⃗2Φ = 0, f(r) = 1−

r4+
r4

(7.10)

Expressing the solution as:

Φ = ei(ωt−p⃗·x⃗)Ψ(y), y =
r2

r2+
(7.11)

The radial wave equation transforms into:

(y2 − 1)(y(y2 − 1)Ψ′)′ +

(
ω2

4
y2 − p2

4
(y2 − 1)

)
Ψ = 0 (7.12)

In seeking QNMs, we focus on the analytical solution that diminishes at the bound-

ary and exhibits ingoing wave characteristics at the horizon. The wave equation

introduces an extra (unphysical) singularity at y = −1, where the wavefunction

follows Ψ ∼ (y+1)±ω/4. Isolating the wavefunction’s behavior near the singularities

y = ±1,

Ψ(y) = (y − 1)−iω/4(y + 1)±ω/4F±(y) (7.13)

F±(y) obeys the Heun equation

y(y2 − 1)F ′′
± +

[(
3− i± 1

2
ω

)
y2 − i± 1

2
ωy − 1

]
F ′
±

+

[
ω

2

(
±iω

4
∓ 1− i

)
y − (i∓ 1)

ω

4
− p2

4

]
F± = 0 (7.14)

The equation must be solved in a complex y-plane region where |y| ≥ 1, covering

the physical domain r > r+. With large ω, the constant terms in the polynomial
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coefficients of F ′ and F become negligible, allowing an approximation of the wave

equation by a hypergeometric equation.

(y2 − 1)F ′′
± +

[(
3− i± 1

2
ω

)
y − i± 1

2
ω

]
F ′
± +

ω

2

(
±iω

4
∓ 1− i

)
F± = 0 (7.15)

In the limit of large frequencies ω, the viable solution is

F0(x) = F1(a+; a−; c; (y + 1)/2), a± = 1− i± 1

4
ω ± 1, c =

3

2
± ω

2
(7.16)

To ensure proper behavior at the boundary (y → ∞), we require F to be a

polynomial, leading to the condition a+ = −n, n = 1, 2, . . . . This condition

implies that F is a polynomial of order n, so as y → ∞, F ∼ yn ∼ y−a+ and

Ψ ∼ y−iω/4y±ω/4y−a+ ∼ y−2, as anticipated. Thus, we derive the quasi-normal

frequencies as [3]

ω̂ =
ω

4πTH
= 2n(±1− i) (7.17)

Gravitational perturbations

I examine gravitational perturbations, focusing specifically on the scenario of

spherical black holes (K = +1). I aim to obtain analytical expressions for QNMs

[4], incorporating first-order corrections [5]. These findings closely align with

numerical analysis results [6]. The generalization of alternative horizon geometries

is straightforward. The radial wave equation governing gravitational perturbations

within the black-hole background can be reformulated into a Schrödinger-like

expression

−d
2Ψ

dr2∗
+ V [r(r∗)]Ψ = ω2Ψ (7.18)
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Expressed in the tortoise coordinate, defined as dr∗
dr

= 1
f(r)

, the potential V for

different perturbation types has been determined by Ishibashi and Kodama [7]. For

tensor, vector, and scalar perturbations, one derives, respectively:

VT (r) = f(r)

[
l(l + d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
+

(d− 2)f ′(r)

2r

]
(7.19)

Vv(r) = f(r)

[
l(l + d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
+

rf ′′′(r)

2(d− 3)

]
(7.20)

Vs(r) =
f(r)

4r2

[
l(l + d− 3)− (d− 2) +

(d− 1)(d− 2)µ

rd−3

]−2

×

{
d(d− 1)2(d− 2)3µ2

R2r2d−8
− 6(d− 1)(d− 2)2(d− 4)[l(l + d− 3)− (d− 2)]µ

R2rd−5

+
(d− 4)(d− 6)[l(l + d− 3)− (d− 2)]2r2

R2
+

2(d− 1)2(d− 2)4µ3

r3d−9

+
4(d− 1)(d− 2)(2d2 − 11d+ 18)[l(l + d− 3)− (d− 2)]µ2

r2d−6

+
(d− 1)2(d− 2)2(d− 4)(d− 6)µ2

r2d−6
(7.21)

− 6(d− 2)(d− 6)[l(l + d− 3)− (d− 2)2]µ

rd−3

− 6(d− 1)(d− 2)2(d− 4)[l(l + d− 3)− (d− 2)]µ

rd−3

+ 4[l(l + d− 3)− (d− 2)]3 + d(d− 2)[l(l + d− 3)− (d− 2)]2

}
(7.22)

Near to the singularity of the black hole (when r ∼ 0),

VT = − 1

4r2∗
+

AT

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2
∗ +. . . , AT =

(d− 3)2

2(2d− 5)
+
ℓ(ℓ+ d− 3)

d− 2
, (7.23)

VV =
3

4r2∗
+

AV

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2
∗ + . . . , AV =

d2 − 8d+ 13

2(2d− 15)
+
ℓ(ℓ+ d− 3)

d− 2

(7.24)

and

VS = − 1

4r2∗
+

AS

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2
∗ + . . . , (7.25)
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where

AS =
(2d3 − 24d2 + 94d− 116)

4(2d− 5)(d− 2)
+

(d2 − 7d+ 14)[ℓ(ℓ+ d− 3)− (d− 2)]

(d− 1)(d− 2)2
(7.26)

I have incorporated only the relevant terms for the desired order. The characteristics

of the potential in the vicinity of the origin can be summarized as follows:

V =
j2 − 1

4r2∗
+A r

− d−1
d−2

∗ + . . . (7.27)

where j = 0 for scalar and tensor perturbations and for vector perturbations, j = 2.

Conversely, in the vicinity of the boundary (for large r),

V =
j2∞ − 1

4(r∗ − r̄∗)2
+ . . . , r̄∗ =

∫ ∞

0

dr

f(r)
(7.28)

where j∞ = d − 1, d − 3, and d − 5 for tensor, vector, and scalar perturbations,

respectively.

Upon rescaling the tortoise coordinate (z = ωr∗), the Schrödinger-like wave

equation to first order takes the form

(
H0 + ω− d−3

d−2 H1

)
Ψ = 0, (7.29)

where

H0 =
d2

dz2
−
[
j2 − 1

4z2
− 1

]
, H1 = −A z−

d−1
d−2 . (7.30)

One can expand the wave function by considering H1 as a perturbation,

Ψ(z) = Ψ0(z) + ω− d−3
d−2 Ψ1(z) + . . . (7.31)
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and solve the wave equation through perturbation.

The wave equation at zeroth order,

H0Ψ0(z) = 0, (7.32)

can be resolved using Bessel functions,

Ψ0(z) = A1

√
z J j

2
(z) + A2

√
z N j

2
(z). (7.33)

For large values B.1 of z, its behavior is similar to

Ψ0(z) ∼
√

2

π
[A1 cos(z − α+) + A2 sin(z − α+)] (7.34)

=
1√
2π

(A1 − iA2)e
−iα+eiz +

1√
2π

(A1 + iA2)e
+iα+e−iz (7.35)

where α± = π
4
(1± j).

At the boundary (r → ∞), the wavefunction must vanish, thus the permissible

solution is

Ψ0(r∗) = B
√
ω(r∗ − r̄∗) J j∞

2
(ω(r∗ − r̄∗)) (7.36)

Certainly, Ψ → 0 as r∗ → r̄∗, as expected. As z becomes large, it behaves as

Ψ(r∗) ∼
√

2

π
B cos [ω(r∗ − r̄∗) + β] , β =

π

4
(1 + j∞) (7.37)

This needs to align with the asymptotic expression of the wavefunction near the

black hole singularity along the Stokes line ℑz = ℑ(ωr∗) = 0. Consequently, it
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imposes a restriction on the coefficients A1 and A2,

A1 tan(ωr̄∗ − β − α+)− A2 = 0. (7.38)

By applying the boundary condition at the horizon

Ψ(z) ∼ eiz , z → −∞ , (7.39)

Applying the boundary condition at the horizon yields an additional constraint.

To determine it, one must analytically extend the wavefunction near the black hole

singularity (z = 0) to negative values of z. A rotation of z by −π corresponds to a

rotation by − π
d−2

near the origin in the complex r-plane. Using the known form of

Bessel functions

Jν(e
−iπz) = e−iπνJν(z) , Nν(e

−iπz) = eiπνNν(z)− 2i cos πν Jν(z) (7.40)

For z < 0, the wavefunction transforms into

Ψ0(z) = e−iπ(j+1)/2
√
−z

{[
A1 − i(1 + eiπj)A2

]
J j

2
(−z) + A2e

iπj N j
2
(−z)

}
(7.41)

whose large z behavior is expressed as

Ψ ∼ e−iπ(j+1)/2

√
2π

[
A1 − i(1 + 2ejπi)A2

]
e−iz +

e−iπ(j+1)/2

√
2π

[A1 − iA2] e
iz (7.42)

As a result, another constraint emerges

A1 − i(1 + 2ejπi)A2 = 0 (7.43)
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The two limitations are in agreement as long as

∣∣∣∣∣∣∣∣
1 −i(1 + 2ejπi)

tan(ωr̄∗ − β − α+) −1

∣∣∣∣∣∣∣∣ = 0 (7.44)

which gives quasi-normal modes [4]

ωr̄∗ =
π

4
(2 + j + j∞)− tan−1 i

1 + 2ejπi
+ nπ (7.45)

The first-order perturbation to the aforementioned asymptotic expression can be

determined using conventional perturbation theory [5]. To first order, the wave

equation becomes

H0Ψ1 +H1Ψ0 = 0 (7.46)

The solution is

Ψ1(z) =
√
z N j

2
(z)

∫ z

0

dz′

√
z′ J j

2
(z′)H1Ψ0(z

′)

W

−
√
z J j

2
(z)

∫ z

0

dz′

√
z′N j

2
(z′)H1Ψ0(z

′)

W
(7.47)

where W = 2/π is the Wronskian.

The wave function at the first order is described as

Ψ(z) = {A1[1− b(z)]− A2a2(z)}
√
zJ j

2
(z) + {A2[1 + b(z)] + A1a1(z)}

√
zN j

2
(z)

(7.48)
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where

a1(z) =
πA
2
ω− d−3

d−2

∫ z

0

dz′ z′
− 1

d−2J j
2
(z′)J j

2
(z′)

a2(z) =
πA
2
ω− d−3

d−2

∫ z

0

dz′ z′
− 1

d−2N j
2
(z′)N j

2
(z′)

b(z) =
πA
2
ω− d−3

d−2

∫ z

0

dz′ z′
− 1

d−2J j
2
(z′)N j

2
(z′)

and A varies based on the nature of the perturbation. In the asymptotic limit, it

demonstrates behavior similar to

Ψ(z) ∼
√

2

π
[A′

1 cos(z − α+) + A′
2 sin(z − α+)] , (7.49)

where

A′
1 = [1− b̄]A1 − ā2A2 , A′

2 = [1 + b̄]A2 + ā1A1 (7.50)

and I established the notation

ā1 = a1(∞) , ā2 = a2(∞) , b̄ = b(∞) (7.51)

The first constraint is adjusted to

A′
1 tan(ωr̄∗ − β − α+)− A′

2 = 0 (7.52)

Explicitly,

[(1− b̄) tan(ωr̄∗ − β − α+)− ā1]A1 − [1 + b̄+ ā2 tan(ωr̄∗ − β − α+)]A2 = 0 (7.53)

To determine the second constraint at the first order, one must approach the
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horizon, involving a rotation of −π in the z plane. Using

a1(e
−iπz) = e−iπ d−3

d−2 e−iπja1(z) ,

a2(e
−iπz) = e−iπ d−3

d−2

[
eiπja2(z)− 4 cos2

πj

2
a1(z)− 2i(1 + eiπj)b(z)

]
,

b(e−iπz) = e−iπ d−3
d−2

[
b(z)− i(1 + e−iπj)a1(z)

]

in the limit z → −∞ we get,

Ψ(z) ∼ −ie−ijπ/2B1 cos(−z − α+)− ieijπ/2B2 sin(−z − α+) (7.54)

where

B1 = A1 − A1e
−iπ d−3

d−2 [b̄− i(1 + e−iπj)ā1]

−A2e
−iπ d−3

d−2

[
e+iπj ā2 − 4 cos2

πj

2
ā1 − 2i(1 + e+iπj)b̄

]
−i(1 + eiπj)

[
A2 + A2e

−iπ d−3
d−2 [b̄− i(1 + e−iπj)ā1] + A1e

−iπ d−3
d−2 e−iπj ā1

]
B2 = A2 + A2e

−iπ d−3
d−2 [b̄− i(1 + e−iπj)ā1] + A1e

−iπ d−3
d−2 e−iπj ā1

Hence, the second constraint in the first order is formulated as

[1−e−iπ d−3
d−2 (iā1+b̄)]A1−[i(1+2eiπj)+e−iπ d−3

d−2 ((1+eiπj)ā1+e
iπj ā2−ib̄)]A2 = 0 (7.55)
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Agreement between the two primary level constraints results in

∣∣∣∣∣∣∣∣∣∣∣
1 + b̄+ ā2 tan(ωr̄∗ − β − α+) i(1 + 2eiπj)

+e−iπ d−3
d−2 ((1 + eiπj)ā1 + eiπj ā2 − ib̄)

(1− b̄) tan(ωr̄∗ − β − α+)− ā1 1− e−iπ d−3
d−2 (iā1 + b̄)

∣∣∣∣∣∣∣∣∣∣∣
= 0

(7.56)

resulting in the quasi-normal frequencies’ first-order expression,

ωr̄∗ =
π

4
(2 + j + j∞) +

1

2i
ln 2 + nπ

−1

8

{
6ib̄− 2ie−iπ d−3

d−2 b̄− 9ā1 + e−iπ d−3
d−2 ā1 + ā2 − e−iπ d−3

d−2 ā2

}

where (see appendix B.2)

ā1 =
πA
4

(
nπ

2r̄∗

)− d−3
d−2 Γ( 1

d−2
)Γ( j

2
+ d−3

2(d−2)
)

Γ2( d−1
2(d−2)

)Γ( j
2
+ d−1

2(d−2)
)

ā2 =

[
1 + 2 cot

π(d− 3)

2(d− 2)
cot

π

2

(
−j + d− 3

d− 2

)]
ā1

b̄ = − cot
π(d− 3)

2(d− 2)
ā1

Therefore, the correction to the first order is approximate of order O(n− d−3
d−2 ).

These analytical findings align well with numerical outcomes [6] for a thorough

comparison [5].
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Electromagnetic perturbations:

The electromagnetic potential within a four-dimensional context is

VEM =
ℓ(ℓ+ 1)

r2
f(r). (7.57)

In proximity to the origin,

VEM =
j2 − 1

4r2∗
+
ℓ(ℓ+ 1)r

−3/2
∗

2
√
−4µ

+ . . . , (7.58)

where j = 1, this results in a potential that diminishes to zeroth order. To derive

the QNM spectrum, it is necessary to incorporate first-order adjustments from

the beginning. By following a similar approach to gravitational perturbations, the

QNMs are derived

ωr̄∗ = nπ − i

4
lnn+

1

2i
ln
(
2(1 + i)A

√
r̄∗
)
, A =

ℓ(ℓ+ 1)

2
√
−4µ

(7.59)

It’s notable that the first-order adjustment exhibits a logarithmic behavior with

respect to n, a characteristic that could be linked to gauge invariance.

Similar to the case of gravitational perturbations, the aforementioned analytical

findings align well with numerical results for a thorough comparison [6]. (see ref.

[5] for detailed comparison)
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8
A detailed study of quasinormal frequencies

of Kerr black hole

8.1 Introduction

The gravitational waves released by perturbed black holes are widely recognized

to be chiefly governed, in the late stages, by quasi-normal modes. These modes

are distinguished by complex frequencies featuring positive imaginary components,

signifying damped oscillations. The quasi-normal frequencies of black holes within

asymptotically flat spacetime hold significant astrophysical relevance. They furnish

insights into key parameters of a black hole, including its mass and angular

momentum. This is why they have been thoroughly investigated for over four

95
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decades.

Regge and Wheeler [8] pioneered the investigation into this subject by ini-

tially exploring linear perturbations of stationary black holes. They formulated

a second-order ordinary differential equation that characterizes perturbations of

scalar, electromagnetic, and gravitational fields around Schwarzschild black holes.

Teukolsky [9] later addressed the challenge of separating the wave equation for

rotating Kerr black holes, successfully deriving two distinct partial differential

equations governing the radial and angular components of the perturbation. For

an in-depth exploration of black hole perturbation, readers can refer to [10].

The discovery of quasinormal modes originated from numerical simulations of

gravitational wave evolution around black holes, initially identified by Vishveshwara

[11] and Press [12]. Chandrasekhar and Detweiler [13] introduced the first numerical

method for computing these modes, relying on direct integration of the Regge-

Wheeler equation. Various analytical approaches have also been attempted to derive

these frequencies, with applications extending to Kerr and Reissner-Nordstrom

black holes. However, these methods often yield less precise frequency values and

struggle to handle rapidly damped modes.

Leaver [14] demonstrated that the quasinormal frequencies of both stationary

and rotating black holes can be obtained using a continued fraction technique.

While several methods exist for computing quasinormal frequencies for stationary

black holes, the continued fraction method remains the only one adaptable to the

Kerr scenario. In the Kerr case, besides determining the quasinormal frequencies,

one must also evaluate the separation constants, which are the angular eigenvalues
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linked to the Teukolsky equations. An enhanced version of Leaver’s findings is

presented in [15].

In perturbing rotating black holes, the computation of angular eigenvalues

concurrently poses significant challenges in achieving accurate frequency outcomes.

As an alternative to Leaver’s method, Sasaki [16] proposed employing ordinary

perturbation theory to tackle the angular equation. However, this approach is

limited to scenarios where the expansion parameter aω remains small. In essence,

for non-zero values of a, this technique fails to handle high frequencies.

In this section, I adopt Leaver’s continued fraction technique. Following the

acquisition of analytical solutions for the radial and angular equations, I simul-

taneously solve the corresponding pair of continued fraction equations, akin to

Leaver’s approach. My subsequent strategy involves initially computing the angular

eigenvalues using a Pade approximation of the actual values, and subsequently

integrating this approximation into the radial solution. I then contrast these two

outcomes and discuss which approach proves more efficient.

8.1.1 Rotating Black Holes

Spacetime Symmetries:

Definition 8.1.1. A spacetime is considered asymptotically flat if and only if it

is stationary, characterized by the existence of a Killing vector field, k, which is

timelike near infinity (where it can be normalized such that k2 → −1). Outside a

potential horizon, k = ∂/∂t, where t represents a time coordinate. Consequently,
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the general metric for a stationary spacetime in these coordinates is expressed as:

ds2 = g00(x⃗)dt
2 + 2g0i(x⃗)dtdx

i + gij(x⃗)dx
idxj (8.1)

A stationary spacetime can be deemed static, at least in the vicinity of infinity, if

it also exhibits invariance under time-reversal. This condition necessitates g0i = 0,

leading to the general static metric formulation:

ds2 = g00(x⃗)dt
2 + gij(x⃗)dx

idxj (8.2)

Definition 8.1.2. An asymptotically flat spacetime demonstrates axisymmetry

when a spacelike Killing vector field m (termed as an ’axial’ Killing vector field)

exists near infinity, and all its orbits are closed. By selecting appropriate coordinates,

we can express m as:

m =
∂

∂ϕ
(8.3)

8.1.2 Kerr metric

The Kerr metric, also known as Kerr geometry, characterizes the geometry of

vacuum spacetime surrounding a rotating, uncharged, axially symmetric black hole

with a nearly spherical event horizon. It serves as an exact solution to the Einstein

field equations of general relativity, which are notably non-linear, posing challenges

in finding precise solutions.

Describing the spacetime geometry near a mass M with angular momen-

tum J , the Kerr metric delineates the relationships. The metric, expressed in
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Boyer–Lindquist coordinates, takes the form of the line element for proper time,

ds2 = −c2dτ 2 (8.4)

= −
(
1− 2Mr

Σ

)
dt2 +

4Mra sin2 θ

Σ
dtdϕ− Σ

∆
dr2 − Σdθ2

−
(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdϕ2 (8.5)

Here, ∆ = r2 − 2Mr − a2 with a = J/M , and Σ = r2 + a2 cos2 θ. A noteworthy

aspect of the provided metric is the presence of the cross-term dt dϕ. This indicates

a coupling between time and motion in the rotational plane, a coupling that

diminishes when the black hole’s angular momentum approaches zero.

Important surfaces

Within the Kerr metric (8.5), numerous significant surfaces emerge. The inner

surface corresponds to an event horizon akin to that found in the Schwarzschild

metric, manifesting where the purely radial component grr of the metric diverges.

Resolving the quadratic equation 1/grr = 0 produces the solution:

rH± =M ±
√
M2 − a2 (8.6)

In contrast to the Schwarzschild metric, where the event horizon coincides with the

location where the purely temporal component gtt of the metric transitions from

positive to negative, in the Kerr metric, this occurrence transpires at a distinct

distance. Once more, resolving a quadratic equation gtt = 0 furnishes the solution:

rE± =M ±
√
M2 − a2 cos2 θ (8.7)
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Because of the presence of the cos2 θ term in the square root, this external surface

takes on the appearance of a flattened sphere that intersects with the inner surface

at the poles of the rotational axis, where the colatitude θ is either 0 or π. The region

between these two surfaces is referred to as the ergosphere. Within this region, the

purely temporal component gtt becomes negative, essentially behaving like a purely

spatial metric component. Therefore, particles within this ergosphere must rotate

along with the central mass in order to maintain their time-like properties.

Figure 8.1: Location of the horizons, ergospheres, and the ring singularity of the Kerr
spacetime in Cartesian Kerr–Schild coordinates.

Credit: By Yukterez (Simon Tyran, Vienna) - Own work, CC BY-SA 4.0,
https: // commons. wikimedia. org/ w/ index. php? curid= 60362250

Ring singularity

In classical physics, under general relativity, when a spherical non-rotating object

reaches a critical radius and collapses due to its own gravitational force, theory

predicts that it will condense into a 0-dimensional point. However, this scenario

differs when considering a rotating black hole, specifically a Kerr black hole.

In the case of a rotating body such as a fluid, its mass distribution deviates

https://commons.wikimedia.org/w/index.php?curid=60362250
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from spherical symmetry, exhibiting an equatorial bulge, and possesses angular

momentum. Classical physics dictates that a point cannot sustain rotation or

angular momentum. Therefore, in general relativity, which is a classical theory, the

smallest form of singularity capable of supporting these properties is a 2-dimensional

ring with negligible thickness but a non-zero radius. This peculiar structure is

commonly known as a ringularity or Kerr singularity.

8.2 Angular and radial continued fractions equations

Teukolsky [9] introduced a master perturbation equation encompassing scalar, elec-

tromagnetic, and gravitational perturbations of this metric. Assuming a temporal

and azimuthal dependence represented by e−iωt+imϕ, Teukolsky separated the field

quantities denoted by ψ and decomposed the wave equation as follows:

ψ(t, r, θ, ϕ) =
1

2π

∫
e−iωt

∞∑
l=|s|

+l∑
m=−l

eimϕSs(θ)Rs(r)dω (8.8)

The decomposed differential equation governing the angular component of the

perturbation is

(1− u2)
d2Ss

du2
− 2u

dSs

du
+W (u)Ss = 0, (8.9)

where

W = a2ω2u2 − 2aωsu+ λ+ s− (m+ su)2

1− u2
, (8.10)

and the corresponding equation for the radial component is

∆
d2Rs

dr2
+ 2(s+ 1)(r −M)

dRs

dr
+ V (r)Rs = 0, (8.11)
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where

V =
K2 − 2isK(r −M)

∆
+ 4isωr − λ+ 2aωm− a2ω2, (8.12)

with

u = cos θ, (8.13)

K = (r2 + a2)ω − am. (8.14)

The spin-weight parameter s corresponds to the values 0, −1, and −2 for outgoing

scalar, electromagnetic, and gravitational fields, respectively. In equation (8.10), λ

represents the angular separation constant, which simplifies to l(l + 1)− s(s+ 1)

in the Schwarzschild limit.

For rotating black holes, numerical solutions for eq. (8.9) are necessary, following

the approach outlined by Leaver [14]. Boundary conditions stipulate that Ss

remains regular at the regular singular points u = ±1. The corresponding indices

are determined by ±(m+ s)/2 at u = 1 and ±(m− s)/2 at u = −1. A solution to

equation (8.9) can be expressed as

Ss(u) = eaωu(1 + u)|m−s|/2(1− u)|m+s|/2
∞∑
n=0

ân(1 + u)n. (8.15)

The coefficients of the series are interconnected through a three-term recurrence

relationship, and the boundary condition at u = 1 is solely met by its minimal

solution sequence. This recurrence relation is characterized by,

α̂0â1 + β̂0â0 = 0, (8.16)
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α̂nân+1 + β̂nân + γ̂nân−1 = 0 (n ≥ 1), (8.17)

where k1 = |m− s|/2, k2 = |m+ s|/2, and the coefficients governing the recurrence

relation are

α̂n = −2(n+ 1)(n+ 2k1 + 1), (8.18)

β̂n = n(n− 1) + 2n(k1 + k2 + 1− 2aω)− 2aω(2k1 + s+ 1)

+(k1 + k2)(k1 + k2 + 1)− (a2ω2 + s(s+ 1) + λ), (8.19)

γ̂n = 2aω(n+ k1 + k2 + s). (8.20)

The infinite continued fraction expresses the ratio between successive ân as follows:

ân+1

ân
=

−γ̂n+1

β̂n+1 − α̂n+1γ̂n+2

β̂n+2−
α̂n+2γ̂n+3

β̂n+3−···

(8.21)

In usual notation, we can write,

ân+1

ân
=

−γ̂n+1

β̂n+1−
α̂n+1γ̂n+2

β̂n+2−
α̂n+2γ̂n+3

β̂n+3−
· · · (8.22)

Eq. (8.22) serves as a boundary condition at n = ∞ for the sequence ân. By

evaluating (8.22) at n = 0 and utilizing equation (8.16) as a boundary condition at

n = 0 for the ratio â1/â0, we derive a characteristic equation for the quasi-normal

frequencies. In essence, two expressions must be simultaneously fulfilled:

From eq.(8.16) we get,

â1
â0

= − β̂0
α̂0

(8.23)
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From eq. (8.17) we get,

â1
â0

= −−γ̂1
β̂1−

α̂1γ̂2

β̂2−
α̂2γ̂3

β̂3−
· · · (8.24)

It’s worth noting that in the Schwarzschild limit (â = 0), the coefficients γ̂n are

zero for all n, and the recursion process halts whenever λ reaches a value such that

β̂n becomes zero for some n. This scenario occurs when λ = n(n+ 1)− s(s+ 1),

meaning n = l.

The solution will be deemed minimal if the angular separation constant λ

corresponds to a root of the continued fraction equation.

0 = β̂0 −
α̂0γ̂1

β̂1−
α̂1γ̂2

β̂2−
α̂2γ̂3

β̂3−
α̂3γ̂4

β̂4−
· · · . (8.25)

Similarly to the approach taken for eq. (8.9), a solution to the radial eq. (8.11) is

obtained. This equation exhibits two regular singular points, r+ and r−, correspond-

ing to the roots of ∆. Introducing a new rotational parameter b = (1− a2/M2)
1
2 ,

where b ranges from 1 to 0 as a varies from 0 to M (the Kerr limit), we redefine

â = a/2M and ω̂ = 2Mω. The event horizon is situated at r = r+. The indices at

r = r+ are iσ+ and −s− iσ+, where σ+ = (ωr+ − âm)/b. Given that the second

index corresponds to in-going radiation, we can impose the quasinormal boundary

conditions on Rs

Rs ∼ (r − r+)
−s−iσ+ , as r → r+ (8.26)

Rs ∼ r−1−2s+iωeiωr, as r → ∞ (8.27)

Thus, our solution can be written as
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Rs = eiωr(r − r−)
−1−s+iω̂+iσ+(r − r+)

−s−iσ+

∞∑
n=0

an

(
r − r+
r − r−

)n

, (8.28)

The expansion coefficients are once more determined by a three-term recurrence

relation,

α0a1 + β0a0 = 0 (8.29)

αnan+1 + βnan + γnan−1 = 0 (n ≥ 1) (8.30)

The recursion coefficients are

αn = n2 + (c0 + 1)n+ c0,

βn = −2n2 + (c1 + 2)n+ c3,

γn = n2 + (c2 − 3)n+ c4 − c2 + 2, (8.31)

and the intermediary constants are determined by

c0 = 1− s− iω̂ − 2i

b

(
ω̂

2
− âm

)
,

c1 = −4 + 2iω̂(2 + b) +
4i

b

(
ω̂

2
− âm

)
,

c2 = s+ 3− 3iω̂ − 2i

b

(
ω̂

2
− âm

)
,

c3 = ω̂2(4 + 2b− â2)− 2âmω̂ − s− 1 + (2 + b)iω̂ − λ+
4ω̂ + 2i

b

(
ω̂

2
− âm

)
,

c4 = s+ 1− 2ω̂2 − (2s+ 3)iω̂ − 4ω̂ + 2i

b

(
ω̂

2
− âm

)
, (8.32)

The radial series solution converges, and the boundary condition at r = ∞ is
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fulfilled if, for a specified set of a, m, λ, and s, the frequency ω corresponds to a

root of the continued fraction equation.

0 = β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

· · · , (8.33)

8.2.1 New technique for the angular equation

For small aω, the angular separation constant can be estimated using perturbation

theory. This approach, as demonstrated by Sasaki in [16], involves expanding the

angular eigenvalues in terms of powers of aω.

λ = λ0 + aωλ1 + a2ω2λ2 +O((aω)3). (8.34)

and the values of the coefficients are

λ0 = l(l + 1)− 2 = (l − 1)(l + 2),

λ1 = −2m
l(l + 1) + 4

l(l + 1)
,

λ2 = −2(l + 1)(cl+1
lm )2 + 2l(cl−1

lm )2 +
2

3
− 2

3

(l + 4)(l − 3)(l2 + l − 3m2)

l(l + 1)(2l + 3)(2l − 1)
,

with

cl+1
lm =

2

(l + 1)2

[
(l + 3)(l − 1)(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)

]1/2
,

cl−1
lm = − 2

l2

[
(l + 2)(l − 2)(l +m)(l −m)

(2l + 1)(2l − 1)

]1/2
.

This approach is effective when the expansion parameter aω remains sufficiently

small, thus avoiding limitations associated with handling high frequencies. Since our
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interest extends to both slowly and rapidly damped modes, we aim to circumvent

such restrictions.

As outlined in the introduction, I adhere to Leaver’s continued fraction method

and propose a novel strategy for numerically solving the two continued fraction

equations (8.25) and (8.33). Instead of employing a two-dimensional root-finding

routine, which simultaneously determines frequencies and separation constants in

the complex plane, I opt to compute the angular eigenvalues first. Subsequently, I

utilize these values in the continued fraction arising from the radial solution.

Initially, I developed a computer program capable of efficiently approximating the

continued fraction (8.25) and computing the corresponding roots, which represent

the angular eigenvalues. For this purpose, we employ the highly effective "modified

Lent’s algorithm" [17], which essentially transforms the continued fraction into a

quotient of two series

fn =
An

Bn

, (8.35)

The coefficients An and Bn are obtained through recurrence relations associated

with the coefficients of the continued fraction. The series are computed from left

to right, and the algorithm terminates once the absolute difference between two

consecutive fractions falls below a predetermined threshold. Subsequently, within

the same program, the roots are determined using a complex one-dimensional

Newton-Rapson method routine.

Following this, I fit the numerical data for λ to a Padé approximation for real
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aω, which is expressed as,

λ =
a0 + a1aω + a2(aω)

2 + a3(aω)
3 + a4(aω)

4

1 + b1aω + b2(aω)2 + b3(aω)3
. (8.36)

Finally, the Padé approximation and numerical data are contrasted for imaginary

aω.

In the Padé formula (8.36), the numerator is one degree higher than the denom-

inator. This selection is made because Teukolsky’s angular equation falls within

the category of differential equations for angular prolate spheroidal wave functions.

The behavior of the angular eigenvalues for large aω, as associated with this type

of equation, is well-documented [18].

Fitting simulations have been conducted for various values of the angular

parameter a and for several combinations of the spherical harmonic parameters l

and m, consistently yielding accurate results when compared with those obtained by

Leaver. I demonstrate the accuracy of our Padé approximation for m = 0 and l = 2,

examining both the real and imaginary components of λ. My fitting procedure

utilized the software package "gnufit". Details of the fit parameters for m = 0 are

presented in Table 8.1, while Tables 8.2 and 8.3 display the corresponding results

for m = ±1.



8.2 Angular and radial continued fractions equations 109

 3.99

 4

 4.01

 4.02

 4.03

 4.04

 4.05

 4.06

 4.07

 4.08

 4.09

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

R
e

(l
a

m
b

d
a

)

omega

Figure 8.2: Real part of λ for â = 0.1
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â a0 a1 a2 a3 a4 b1 b2 b3
0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 4.0 -0.2979 -0.3994 0.0420 -0.0294 -0.0744 0.0310 0.0009
0.2 4.0 -0.3127 -0.3939 0.0434 -0.03 -0.0781 0.0323 0.0008
0.3 4.0 -0.5886 -0.2857 0.0679 -0.0396 -0.1470 0.0588 -0.0009
0.4 4.0 -0.5284 -0.2889 0.0619 -0.04038 -0.1320 0.0582 -0.0008
0.49 4.0 -0.5378 -0.2872 0.0627 -0.0404 -0.1343 0.0586 -0.00086

Table 8.1: This table displays the parameters obtained through fitting the Padé approxi-
mation for λ, based on numerical data generated by a computer program computing the
angular eigenvalues of the Teukolsky equation, specifically for m = 0.

â a0 a1 a2 a3 b1 b2
0.0 4.0 0.0 0.0 0.0 0.0 0.0
0.1 4.0 0.8550 -0.8523 0.0792 -0.1195 -0.0289
0.2 4.0 2.2571 -0.4582 -0.0919 0.2284 -0.0380
0.3 4.0 2.8878 -0.3198 -0.1651 0.3838 -0.0483
0.4 4.0 3.2568 -0.2402 -0.2078 0.4747 -0.0546
0.49 4.0 3.2944 -0.2335 -0.2118 0.4838 -0.0553

Table 8.2: This table presents the parameters derived from fitting the Padé approximation
for λ to the numerical output generated by a computer program computing the angular
eigenvalues of the Teukolsky equation, specifically for m = −1.

â a0 a1 a2 a3 b1 b2
0.0 4.0 0.0 0.0 0.0 0.0 0.0
0.1 4.0 -4.1751 0.5889 0.2868 -0.7104 0.0543
0.2 4.0 -2.1949 -0.2201 0.0469 -0.2151 0.0163
0.3 4.0 -2.7029 -0.0173 0.1112 -0.3423 0.0252
0.4 4.0 -2.5610 -0.0748 0.0937 -0.3068 0.0226
0.49 4.0 -2.7425 -0.0014 0.1161 -0.3522 0.0258

Table 8.3: This table displays the parameters obtained by fitting the Padé approximation
for λ to the numerical results obtained from a computer program computing the angular
eigenvalues of the Teukolsky equation, specifically for m = +1.

8.2.2 Radial equation and numerical results

Due to the adoption of the new method, the concern regarding the angular equation

and its eigenvalues has been alleviated. Consequently, we can now focus our

numerical efforts on the radial equation. Similar to our approach with the angular

equation, our priority lies in efficiently representing the radial continued fraction

(8.33). It is advantageous in this scenario to consider the nth inversion of the radial
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continued fraction, expressed as:

0 =

[
β̂n −

α̂n−1γ̂n

β̂n−1−
α̂n−2γ̂n−1

β̂n−2−
· · · α̂0γ̂1

β̂0

]
−
[
α̂nγ̂n+1

β̂n+1−
α̂n+1γ̂n+2

β̂n+2−
· · ·
]
, (8.37)

Because the nth quasinormal frequency is typically the most stable root of the

nth inversion [14], I focus on this approach. I employ Lentz’s method for both the

finite and infinite fractions in equation (8.37). Subsequently, I developed another

straightforward computer program, akin to the one utilized for the angular equation,

capable of approximating the sum in (8.37) and simultaneously computing its roots.

This program incorporates the Padé rational function to represent the angular

eigenvalues present in (8.33). Consequently, the roots obtained from this method

correspond to the Kerr quasinormal frequencies under investigation.

This innovative approach enables us to match or exceed previous results up to

the ninth mode [14, 15].

Fig. 8.8 presents several plots illustrating the distribution of quasinormal frequencies

across different angular parameters â, spanning from â = 0.1 to â = 0.49, closely

approaching the Kerr limit. The top left panel depicts the frequencies for â = 0.0,

l = 2, and m = 0, representing the classical outcome for Schwarzschild black holes,

as documented in references such as [19] and [20].

Fig. 8.9 illustrates the modes in closer detail, each parameterized by the rotation

parameter a. Notably, it’s evident that the ninth mode begins on the imaginary

axis, consistent with expectations.

In Fig. 8.10, I present a detailed view of the curve depicting the fifth mode for

m = ±1, demonstrating the complex conjugate symmetry of the Kerr quasinormal

frequencies. This figure reaffirms the accuracy of our technique in reproducing



112 Chapter 8 - A detailed study of quasinormal frequencies of Kerr black hole

-12

-10

-8

-6

-4

-2

 0
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Im
(w

)

a = 0.0
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(b) â = 0.1
-12

-10

-8

-6

-4

-2

 0
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Im
(w

)

a = 0.2
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Figure 8.8: The initial quasinormal frequencies for l = 2 and m = 0, scaled by 2M , are
depicted in the complex plane. Each panel showcases a distinct angular momentum per
unit mass â, spanning from 0.0 to M , nearing the Kerr limit.
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Additionally, we demonstrate the complex conjugate relationship of the Kerr quasinormal
frequencies, where squares denote the complex conjugate frequencies for a = 0.0.
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Leaver’s results. The peak observed for m = −1 and angular parameter â ranging

from zero to the Kerr limit confirms a similar behavior found by Leaver.

â ω̂1 ω̂2 ω̂3 ω̂4 ω̂5

0.0 (0.747343, -0.177925) (0.693422, -0.547829) (0.602107, -0.956555) (0.503011, -1.4103) (0.415028, -1.89369)
0.1 (0.750252, -0.177401) (0.697296, -0.546029) (0.607671, -0.952749) (0.510396, -1.40365) (0.424195, -1.88378)
0.2 (0.75936, -0.175653) (0.709343, -0.540027) (0.624762, -0.940155) (0.532732, -1.38181) (0.451287, -1.85134)
0.3 (0.776104, -0.17199) (0.731061, -0.527509) (0.654649, -0.914241) (0.57023, -1.33741) (0.494169, -1.78589)
0.4 (0.803834, -0.164314) (0.765136, -0.501476) (0.6975, -0.86143) (0.616905, -1.24857) (0.535028, -1.65631)
0.49 (0.844509, -0.147065) (0.802873, -0.446104) (0.7198, -0.7616) (0.60027, -1.11018) (0.462988, -1.50839)

Table 8.4: Numerical values of the first five Kerr quasinormal frequencies for l = 2, m = 0,
ranging from â = 0.0 to 0.49.

In Table 8.4, I present the numerical results of Kerr quasinormal frequencies for

l = 2 and m = 0, calculated using our updated method. It’s worth noting that

the values of the primary modes closely align with those from Leaver’s analysis, as

evidenced by the comparison in Table 8.5

â Leaver’s fund. mode Our fund. mode
0.0 (0.747343, -0.177925) (0.747343, -0.177925)
0.1 (0.750248, -0.177401) (0.750252, -0.177401)
0.2 (0.759363, -0.175653) (0.75936, -0.175653)
0.3 (0.766108, -0.171989) (0.776104, -0.17199)
0.4 (0.803835, -0.164313) (0.803834, -0.164314)
0.49 (0.844509, -0.147065) (0.844509, -0.147065)

Table 8.5: In this table, I present a comparison between our fundamental mode and
Leaver’s results for l = 2 and m = 0, illustrating their close similarity.
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A detailed study of quasi-normal

frequencies of Kerr Sen black hole

9.1 Kerr Sen Spacetime

In 1992, Sen derived a solution for a four-dimensional black hole with charge

and rotation within the low-energy approximation of heterotic string theory. The

effective action governing this scenario in four dimensions is detailed in the literature

[21].

S =

∫
d4x
√

|g̃|e−Φ

(
R− 1

8
FµνF

µν + g̃µν∂µΦ∂νΦ− 1

12
HκλµH

κλµ

)
(9.1)

115
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Here, g̃ represents the determinant of the tensor metric g̃µν , where the spacetime

metric in the Einstein frame gµν and the string metric g̃µν are connected through the

relation gµν = e−Φg̃µν . In this context, R stands for the scalar curvature, Φ denotes

the dilaton field, and Fµν represents the field-strength tensor Fµν = ∂µAν − ∂νAµ.

Here, Aν denotes the electromagnetic 4-vector potential of the charged black hole,

while Hκλµ represents the third-rank tensor field,

Hκµν = ∂κBµν + ∂νBκµ + ∂µBνκ −
1

4
(AκFµν + AνFκµ + AµFνκ) (9.2)

Bνσ represents a second-rank antisymmetric tensor gauge field. Sen utilized a

transformation on the Kerr solution, originally a vacuum Einstein equation solution,

yielding the charged rotating black hole solution dubbed the Kerr-Sen solution

within the theory (9.1). In Boyer-Lindquist coordinates (t, r, θ, ϕ), the Kerr-Sen

metric in the Einstein frame can be expressed as:

ds2 = −
(
1− 2Mr

Σ

)
dt2 + Σ

(
dr2

∆KS

+ dθ2
)
− 4Mra

Σ
sin2θdtdϕ

+

(
Σ + a2sin2θ +

2Mra2sin2θ

Σ

)
sin2θdϕ2, (9.3)

where

b =
Q2

2M
(9.4)

∆KS = r(r + 2b)− 2Mr + a2 (9.5)

Σ = r(r + 2b) + a2cos2θ. (9.6)
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Indeed, r+ and r− denote the outer and inner horizons of the black hole, respectively,

defined as:

r± = M− b±
√

(M− b)2 − a2. (9.7)

The existing elements of the Kerr-Sen contravariant tensor metric in the Einstein

frame are:

gtt =
∆KSa

2sin2θ − (r2 + 2br + a2)
2

∆KSΣ
, grr =

∆KS

Σ
(9.8)

gθθ =
1

Σ
, gϕϕ =

∆KS − a2sin2θ

∆KSΣsin
2θ

(9.9)

gtϕ = gϕt = −2Mar

∆KSΣ
, (9.10)

where
√
−g = Σsin θ. The Kerr-Sen metric (9.3) characterizes a black hole

possessing mass M, electric charge Q, and angular momentum J = Ma. The

solutions pertaining to non-gravitational fundamental fields within the theory

specified by the action (9.1) are

e−2Φ =
Σ

r2 + a2cos2θ
(9.11)

At = −Qr
Σ

(9.12)

Aϕ =
Qrasin2θ

Σ
(9.13)

Btϕ =
brasin2θ

Σ
(9.14)
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and the corresponding Hawking temperature, angular velocity, and electrostatic

potential at the horizon are determined as:

TH =
r+ − r−
8πMr+

=

√
(2M2 −Q2)2 − 4J2

4πM
(
2M2 −Q2 +

√
(2M2 −Q2)2 − 4J2

) (9.15)

ΩH =
a

2Mr+
=

J

M
(
2M2 −Q2 +

√
(2M2 −Q2)2 − 4J2

) (9.16)

ΦH =
Q

2M
(9.17)

9.2 Quasi-Normal Modes (QNMs) of the Kerr-Sen Black

Hole

9.2.1 perturbation of the scalar field

Examining a massless scalar field denoted as Φ within the Kerr-Sen spacetime, it

obeys the Klein-Gordon equation

1√
−g

∂α(g
αβ
√
−g∂βΦ) = 0. (9.18)

In Teukolsky’s research [9], it is demonstrated that all scalar fields satisfying

∇2Φ = 0 can be separated in Boyer-Lindquist coordinates. Consequently, for the

scalar field Φ(t, r, θ, φ) within the Kerr-Sen spacetime, we can express it as:

Φ = e−iωteimφR(r)S(θ), (9.19)
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In the eikonal limit, the functions R(r) and S(θ) adhere to the subsequent equations.

1

sin θ

d

dθ

(
sin θ

dS(θ)

dθ

)
+

(
a2ω2cos2θ − m2

sin2 θ
+ Aℓm

)
S(θ) = 0 (9.20)

d

dr

(
∆KS

dR(r)

dr

)
+

(
(r(r + 2b) + a2)2

∆KS

+ 2amω − Aℓm

)
R(r) = 0 (9.21)

Here, m represents the azimuthal quantum number, while Aℓm signifies the angular

eigenvalue, which is dependent on ω. As the parameters a and b approach zero (the

Schwarzschild limit), the angle eigenvalue simplifies to Aℓm = ℓ(ℓ+ 1) (Discussed

earlier in Section 8.2). Typically, the expression for Aℓm is intricate, allowing for

separation into real and imaginary parts [22]

Aℓm = AR
ℓm − iAI

ℓm (9.22)

Eq. (9.20) must adhere to the Bohr-Sommerfeld quantization criterion [22]

∫ θ+

θ−

√
a2ω2

Rcos
2θ − m2

sin2θ
+ AR

ℓmdθ = (L− | m |)π. (9.23)

In this instance, we set L as ℓ + 1/2 following [22]. Symbols θ± denote the

turning point and the zero point of the potential, respectively. Referring to

the angular equation Eq.(9.20), and we redefine variables as dx = dθ/ sin θ and

x = log(tan(θ/2)) to express Eq.(9.20) differently

d2S(θ)

dx2
+ (a2ω2

Rcos
2θsin2θ −m2 + AR

ℓmsin
2θ)S(θ) = 0. (9.24)

Eq.(9.20) possesses two regular singular points, cosθ = +1 and cosθ = −1. The

stipulated boundary condition for Eq.(9.20) is that Sθ remains finite at these
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singular points. In line with E. W. Leaver’s approach [14], a solution to Eq.(9.20)

can be formulated as:

Sθ = eaωcosθ(1 + cosθ)
|m|
2 (1− cosθ)

|m|
2

∞∑
n=0

an(1 + cosθ)n. (9.25)

Through the substitution of Eq. (9.25) into Eq. (9.20), a three-term recurrence

relation can be derived:

α0a1 + β0a0 = 0 (9.26)

αnan+1 + βnan + γnan−1 = 0, n = 1, 2 · · · (9.27)

For a given a and m, solving the continued fraction equation yields ωR and Aℓm.

Remarkably, this equation shares the same form and recurrence coefficients as those

in the Kerr black hole scalar field case [14], owing to similar equation forms and

boundary conditions. Consequently, the angular separation constant Aℓm for the

KS black hole scalar field equation can be determined using the methodologies

outlined in [22, 23]. Particularly, in the eikonal limit where ℓ≫ 1, treating aωR as

small allows the expansion of AR
ℓm as a Taylor series [14],

AR
ℓm =

∞∑
p=0

fp(aωR)
p ≈ f0 + f2(aωR)

2 +O(aωR)
4 ≈ L2 +

1

2
(
m2

L2
− 1)a2ω2

R (9.28)
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9.3 The relationship between Quasinormal Modes (QNMs)

and the shadow radius.

By equating the massless scalar field Φ with the dominant component of the

principal function (C.2), we can express it as:

Φ = eiS = e−iEteiLzϕeiSθeiSr (9.29)

Upon comparing Eq.(9.19) and Eq.(9.29), it becomes apparent that

E = ωR, Lz = m (9.30)

Furthermore, upon examining equations (C.3), (9.20), and (9.24), and applying as

employed in Ref. [22], we can additionally identify that

D = AR
ℓm −m2 (9.31)

For conventional Quasinormal Modes (QNMs), it can be formulated as per [22]

ω = (ℓ+
1

2
)ΩR(µ)− i(n+

1

2
)ΩI(µ) (9.32)

with µ ≡ m/(ℓ+ 1/2) and ΩR ≡ ωR/L In the context of a rotating black hole, a

new angle ∆φprec is introduced, as discussed in [22], symbolizing the Lense-Thirring

precession frequency due to the black hole’s rotation [22]. If we designate Tθ as the

period of motion in the θ direction, then the associated precession frequency Ωprec

can be expressed as:
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Ωprec =
∆φprec

Tθ
(9.33)

In the context of a rotating black hole, the real component of the frequency can be

represented as per [24]

ΩR = Ωθ(µ) + µΩprec(µ) (9.34)

here Ωθ = 2π/Tθ. When contemplating a full cycle of the photon orbit in the θ

direction

δS = Lz∆φ− ETθ + δSθ = 0, (9.35)

Here, ∆φ denotes the azimuthal change following the completion of a cycle in the

given direction; it correlates with ∆φprec through,

∆φ = ∆φprec + 2πsgn(Lz) (9.36)

The function sgn(.) determines the sign of its argument. Regarding δSθ, when

examined alongside Eq.(9.23), it leads to the equation:

δSθ = 2

∫ θ+

θ−

√
Θdθ = 2

∫ θ+

θ−

√
D − cos2θ

(
L2

sin2θ
− a2E2

)
dθ = 2π(L−Lz) (9.37)

By merging equations (9.30), (9.33), (9.37), we have determined that

L

E
=

1

Ωθ + µΩprec

=
1

ΩR

(9.38)

When replacing D = AR
ℓm −m2 into Eq.(9.28), under the condition of large ℓ, an

equation arises:
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√
D + L2

z

E
≈ Rs (9.39)

Furthermore, by comparing equations (9.28), (9.31), and (9.39), we can derive:

L2

E2
=

D + L2
z

E2
+
a2

2

(
1− m2

L2

)
(9.40)

≈ R2
s +

a2

2

(
1− m2

L2

)
(9.41)

Gathering all components, the link between the real component of the Quasinormal

Modes (QNMs) and the shadow radius R+
s and R−

s is depicted in [25] as

ωR =
1

2
(ωR+ − ωR−) (9.42)

where ωR± is

ωR± = ±
ℓ+ 1

2√
(R±

s )
2 + a2

2
(1− µ2)

(9.43)

For limit ℓ≫ 1 and m± ℓ i.e. µ→ 1 we get ωR± ≈ ℓ
R±

s
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10
Conclusion

Throughout this thesis, I have delved into the intricate realm of Anti-de Sitter (AdS)

black holes, focusing particularly on the significant role played by quasinormal

modes (QNMs) in understanding their dynamic behavior. My exploration has

encompassed both analytical and numerical investigations, shedding light on various

aspects of AdS black holes and their astrophysical implications.

The analytic calculation of QNMs has been a central focus of our research. By

discussing both high overtones and low frequencies, I have elucidated the profound

connections between perturbations of black holes in asymptotically AdS space and

the dynamics of strongly coupled gauge theories.

Of particular interest are the quasinormal frequencies associated with gravita-
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tional perturbations of Kerr black holes, which have been extensively studied due

to their astrophysical significance. My research has introduced a novel technique

for computing these frequencies, circumventing the challenges posed by traditional

numerical methods. However, a viable method involves thoroughly plotting the

complete zero contours of all system functions, which comprise an unspecified quan-

tity of separate closed curves. The points where these curves intersect represent the

roots. The new technique consists of a new numerical way to evaluate the angular

eigenvalues of the Teukolsky angular equation, which is independent of the solution

of the radial part of the problem. By accurately evaluating the angular eigenvalues

of the Teukolsky angular equation, my approach offers insights into the behavior of

rotating black holes across a range of parameters.

Furthermore, I have explored the intriguing connections between the shadow

radius and the real part of QNMs of Kerr-Sen black holes in the eikonal limit.

Through a comprehensive analysis of massless scalar field perturbations and the

Hamilton-Jacobi function, I have established a correspondence relation between

QNMs and shadow radius, facilitating the calculation of QNMs through shadow

radius. My findings support earlier conclusions and suggest opportunities for

future investigation, such as expanding numerical computations to higher modes or

formulating analytical expressions for the asymptotic tendencies of Kerr QNFs.

In conclusion, my research contributes to a deeper understanding of AdS black

holes and their implications for theoretical physics and astrophysics. By uncovering

new insights into the behavior of quasinormal modes and their connections with

fundamental physical phenomena, I pave the way for future explorations in this

captivating field.



A
Appendix A

A.1 SP = SNG at Classical Level

To see Polyakov’s action is equivalent to Nambu-Goto’s action at the classical level,

note that the world-sheet stress-energy tensor is defined as:

Tab = −4π
δSP√
−γδγab

(A.1)

Since δSP = 0 for variations around the classical solution (on-shell), the equation

of motion for γab is Tab = 0. Using:

δ
√
−γ = −1

2

√
−γγabδγab (A.2)
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then the stress-energy tensor can be found:

(∫
Σ

d2σ

)−1

δSP = − 1

4πα′

(
δ
√
−γγabhab +

√
−γδγabhab

)
=

1

4πα′

√
−γ
(
1

2
γabγ

cdhcd − hab

)
δγab

(A.3)

⇒ Tab =
1

α′

(
1

2
γabγ

cdhcd − hab

)
(A.4)

=
1

α′Gµν

(
1

2
γabγ

cd∂cX
µ∂dX

ν − ∂aX
µ∂bX

ν

)
= 0 (A.5)

This means γab = Bhab, with B = B(σ, τ) can be arbitrary. Integrate out the

world-sheet intrinsic metric field γab:

SP

[
γab = Bhab, Xµ

]
=

1

4πα′

∫
Σ

d2σ
(
B−1

√
−h
) (
Bhab

)
(hab)

=
1

2πα′

∫
Σ

d2σ
√
−h = SNG [Xµ]

(A.6)
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Appendix B

B.1 Asymptotic Limit of Bessel Functions

We may consider the following asymptotic expansion of Bessel functions

J j
2
(y) ∼

√
2

πz
cos(y ∓ α+) , N j

2
(y) ∼

√
2

πz
sin(y ∓ α+) , y ≫ ±1, (B.1)

where α± = π
4
(1± j).
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B.2 Appendix B.2

We evaluated the relevant limit j → 0, 2 whenever it was clear, aiming to streamline

the notation. Employing

∫ ∞

0

dx x−λJµ(x)Jν(x) =
Γ(λ)Γ

(
ν+µ+1−λ

2

)
2λΓ

(−ν+µ+1+λ
2

)
Γ
(
ν−µ+1+λ

2

)
Γ
(
ν+µ+1+λ

2

) , (B.2)
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Appendix C

The Hamilton-Jacobi equation governing the geodesics of the Kerr-Sen black hole

is described as

∂S

∂σ
= −1

2

∂S

∂xµ
∂S

∂xν
, (C.1)

In this context, S represents the principal function, while σ denotes an affine

parameter. Referring to null geodesics, the associated principal function S is

outlined in

S(t, r, θ, φ) = −Et+ Sr(r) + Sθ(θ) + Lzφ (C.2)
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By merging Eq.(C.1) and Eq.(C.2), we obtain two distinct components of the

Hamilton-Jacobi equation,

Sr(r) = ±
∫
R(r)

∆KS

dr, Sθ(θ) = ±
∫ √

Θ(θ)dθ (C.3)

where,

R(r) = (aLz − E(r(r + 2b) + a2))2 −∆KS((Lz − aE)2 +D) (C.4)

Θ(θ) = D − cos2θ

(
L2
z

sin2θ
− a2E2

)
(C.5)

C.1 Shadow Radius of Kerr Sen Black Hole

Shadow radii for KS Black hole [26] can be expressed as

Rs =
1

2
(x(r+0 )− x(r−0 )) (C.6)

where x(r±0 ) is unstable photon orbits [25, 26] But shadow radii of a black hole can

be expressed as Rs = Lz/E so we get [25]

R±
s = a±

√
4b3 + 8b2r±0 + 5b(r±0 )

2 + (r±0 )
3

M
(C.7)
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